122 lines
4.4 KiB
Python
122 lines
4.4 KiB
Python
|
#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
# Copyright (C) 2018-2023 Intel Corporation
|
||
|
# SPDX-License-Identifier: Apache-2.0
|
||
|
|
||
|
# https://docs.openvino.ai/2023.3/openvino_sample_hello_reshape_ssd.html
|
||
|
|
||
|
import logging as log
|
||
|
import os
|
||
|
import sys
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import openvino as ov
|
||
|
|
||
|
|
||
|
def main():
|
||
|
log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout)
|
||
|
|
||
|
# Parsing and validation of input arguments
|
||
|
if len(sys.argv) != 4:
|
||
|
log.info(f'Usage: {sys.argv[0]} <path_to_model> <path_to_image> <device_name>')
|
||
|
return 1
|
||
|
|
||
|
model_path = sys.argv[1]
|
||
|
image_path = sys.argv[2]
|
||
|
device_name = sys.argv[3]
|
||
|
|
||
|
# --------------------------- Step 1. Initialize OpenVINO Runtime Core ------------------------------------------------
|
||
|
log.info('Creating OpenVINO Runtime Core')
|
||
|
core = ov.Core()
|
||
|
|
||
|
# --------------------------- Step 2. Read a model --------------------------------------------------------------------
|
||
|
log.info(f'Reading the model: {model_path}')
|
||
|
# (.xml and .bin files) or (.onnx file)
|
||
|
model = core.read_model(model_path)
|
||
|
|
||
|
if len(model.inputs) != 1:
|
||
|
log.error('Sample supports only single input topologies')
|
||
|
return -1
|
||
|
|
||
|
if len(model.outputs) != 1:
|
||
|
log.error('Sample supports only single output topologies')
|
||
|
return -1
|
||
|
|
||
|
# --------------------------- Step 3. Set up input --------------------------------------------------------------------
|
||
|
# Read input image
|
||
|
image = cv2.imread(image_path)
|
||
|
# Add N dimension
|
||
|
input_tensor = np.expand_dims(image, 0)
|
||
|
|
||
|
log.info('Reshaping the model to the height and width of the input image')
|
||
|
n, h, w, c = input_tensor.shape
|
||
|
model.reshape({model.input().get_any_name(): ov.PartialShape((n, c, h, w))})
|
||
|
|
||
|
# --------------------------- Step 4. Apply preprocessing -------------------------------------------------------------
|
||
|
ppp = ov.preprocess.PrePostProcessor(model)
|
||
|
|
||
|
# 1) Set input tensor information:
|
||
|
# - input() provides information about a single model input
|
||
|
# - precision of tensor is supposed to be 'u8'
|
||
|
# - layout of data is 'NHWC'
|
||
|
ppp.input().tensor() \
|
||
|
.set_element_type(ov.Type.u8) \
|
||
|
.set_layout(ov.Layout('NHWC')) # noqa: N400
|
||
|
|
||
|
# 2) Here we suppose model has 'NCHW' layout for input
|
||
|
ppp.input().model().set_layout(ov.Layout('NCHW'))
|
||
|
|
||
|
# 3) Set output tensor information:
|
||
|
# - precision of tensor is supposed to be 'f32'
|
||
|
ppp.output().tensor().set_element_type(ov.Type.f32)
|
||
|
|
||
|
# 4) Apply preprocessing modifing the original 'model'
|
||
|
model = ppp.build()
|
||
|
|
||
|
# ---------------------------Step 4. Loading model to the device-------------------------------------------------------
|
||
|
log.info('Loading the model to the plugin')
|
||
|
compiled_model = core.compile_model(model, device_name)
|
||
|
|
||
|
# --------------------------- Step 6. Create infer request and do inference synchronously -----------------------------
|
||
|
log.info('Starting inference in synchronous mode')
|
||
|
results = compiled_model.infer_new_request({0: input_tensor})
|
||
|
|
||
|
# ---------------------------Step 6. Process output--------------------------------------------------------------------
|
||
|
predictions = next(iter(results.values()))
|
||
|
|
||
|
# Change a shape of a numpy.ndarray with results ([1, 1, N, 7]) to get another one ([N, 7]),
|
||
|
# where N is the number of detected bounding boxes
|
||
|
detections = predictions.reshape(-1, 7)
|
||
|
|
||
|
for detection in detections:
|
||
|
confidence = detection[2]
|
||
|
|
||
|
if confidence > 0.5:
|
||
|
class_id = int(detection[1])
|
||
|
|
||
|
xmin = int(detection[3] * w)
|
||
|
ymin = int(detection[4] * h)
|
||
|
xmax = int(detection[5] * w)
|
||
|
ymax = int(detection[6] * h)
|
||
|
|
||
|
log.info(f'Found: class_id = {class_id}, confidence = {confidence:.2f}, ' f'coords = ({xmin}, {ymin}), ({xmax}, {ymax})')
|
||
|
|
||
|
# Draw a bounding box on a output image
|
||
|
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
|
||
|
|
||
|
cv2.imwrite('out.bmp', image)
|
||
|
|
||
|
if os.path.exists('out.bmp'):
|
||
|
log.info('Image out.bmp was created!')
|
||
|
else:
|
||
|
log.error('Image out.bmp was not created. Check your permissions.')
|
||
|
|
||
|
# ----------------------------------------------------------------------------------------------------------------------
|
||
|
log.info('This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool\n')
|
||
|
return 0
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
sys.exit(main())
|