snipplets.dev/projects/Python/OpenCV_to_HTML/motion_detection.py

52 lines
2.0 KiB
Python
Raw Normal View History

2023-11-12 22:45:23 +03:00
import numpy as np
import imutils
import cv2
class SingleMotionDetector:
def __init__(self, accumWeight=0.5):
# store the accumulated weight factor
self.accumWeight = accumWeight
# initialize the background model
self.bg = None
def update(self, image):
# if the background model is None, initialize it
if self.bg is None:
self.bg = image.copy().astype('float')
return
# update the background model by accumulating the weighted
# average
cv2.accumulateWeighted(image, self.bg, self.accumWeight)
def detect(self, image, tVal=25):
# compute the absolute difference between the background model
# and the image passed in, then threshold the delta image
delta = cv2.absdiff(self.bg.astype('uint8'), image)
thresh = cv2.threshold(delta, tVal, 255, cv2.THRESH_BINARY)[1]
# perform a series of erosions and dilations to remove small blobs
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=2)
# find contours in the thresholded image and initialize
# the minimum and maximum bounding box regions for motion
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
(minX, minY) = (np.inf, np.inf)
(maxX, maxY) = (-np.inf, -np.inf)
# if no contours were found, return None
if len(cnts) == 0:
return None
# otherwise, loop over the contours
for c in cnts:
# compute the bounding box of the contour and use it to
# update the minimum and maximum bounding box regions
(x, y, w, h) = cv2.boundingRect(c)
(minX, minY) = (min(minX, x), min(minY, y))
(maxX, maxY) = (max(maxX, x + w), max(maxY, y + h))
2024-03-20 00:28:23 +03:00
# otherwise, return a tuple of the thresholded image along with bounding box
2023-11-12 22:45:23 +03:00
return (thresh, (minX, minY, maxX, maxY))