freeRAM func

This commit is contained in:
Alexander Popov 2023-11-12 22:45:23 +03:00
parent 498da7474c
commit d40e4c660b
Signed by: iiiypuk
GPG Key ID: E47FE0AB36CD5ED6
7 changed files with 233 additions and 0 deletions

5
code/Arduino/freeRAM.c Normal file
View File

@ -0,0 +1,5 @@
int freeRAM() {
extern int __heap_start, *__brkval;
int v;
return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}

View File

@ -0,0 +1,2 @@
Code from this tutorial
https://pyimagesearch.com/2019/09/02/opencv-stream-video-to-web-browser-html-page/.

View File

@ -0,0 +1,52 @@
import numpy as np
import imutils
import cv2
class SingleMotionDetector:
def __init__(self, accumWeight=0.5):
# store the accumulated weight factor
self.accumWeight = accumWeight
# initialize the background model
self.bg = None
def update(self, image):
# if the background model is None, initialize it
if self.bg is None:
self.bg = image.copy().astype('float')
return
# update the background model by accumulating the weighted
# average
cv2.accumulateWeighted(image, self.bg, self.accumWeight)
def detect(self, image, tVal=25):
# compute the absolute difference between the background model
# and the image passed in, then threshold the delta image
delta = cv2.absdiff(self.bg.astype('uint8'), image)
thresh = cv2.threshold(delta, tVal, 255, cv2.THRESH_BINARY)[1]
# perform a series of erosions and dilations to remove small blobs
thresh = cv2.erode(thresh, None, iterations=2)
thresh = cv2.dilate(thresh, None, iterations=2)
# find contours in the thresholded image and initialize
# the minimum and maximum bounding box regions for motion
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
(minX, minY) = (np.inf, np.inf)
(maxX, maxY) = (-np.inf, -np.inf)
# if no contours were found, return None
if len(cnts) == 0:
return None
# otherwise, loop over the contours
for c in cnts:
# compute the bounding box of the contour and use it to
# update the minimum and maximum bounding box regions
(x, y, w, h) = cv2.boundingRect(c)
(minX, minY) = (min(minX, x), min(minY, y))
(maxX, maxY) = (max(maxX, x + w), max(maxY, y + h))
# otherwise, return a tuple of the thresholded image along
# with bounding box
return (thresh, (minX, minY, maxX, maxY))

View File

@ -0,0 +1,4 @@
[tool.black]
skip-string-normalization = true
pycodestyle = true
line-length = 100

View File

@ -0,0 +1,3 @@
#!/bin/sh
python3 ./webstreaming.py --ip 0.0.0.0 --port 8000

View File

@ -0,0 +1,29 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>OpenCV Stream video</title>
<style type="text/css">
body {
background-color: #2a2a3a;
color: #efefef;
font-family: Ubuntu;
}
div.video {
text-align: center;
}
img.video-frame {
border-radius: 8px;
}
</style>
</head>
<body>
<div class="video">
<h1>OpenCV Stream video to web browser/HTML page</h1>
<img class="video-frame" src="{{ url_for('video_feed') }}">
</div>
</body>
</html>

View File

@ -0,0 +1,138 @@
#!/usr/bin/env python3
# import the necessary packages
from motion_detection import SingleMotionDetector
from imutils.video import VideoStream
from flask import Response
from flask import Flask
from flask import render_template
import threading
import argparse
import datetime
import imutils
import time
import cv2
# initialize the output frame and a lock used to ensure thread-safe
# exchanges of the output frames (useful when multiple browsers/tabs
# are viewing the stream)
outputFrame = None
lock = threading.Lock()
# initialize a flask object
app = Flask(__name__)
# initialize the video stream and allow the camera sensor to
# warmup
# vs = VideoStream(usePiCamera=1).start()
vs = VideoStream(src=0).start()
time.sleep(2.0)
def detect_motion(frameCount):
# grab global references to the video stream, output frame, and lock variables
global vs, outputFrame, lock
# initialize the motion detector and the total number of frames read thus far
md = SingleMotionDetector(accumWeight=0.1)
total = 0
# loop over frames from the video stream
while True:
# read the next frame from the video stream, resize it,
# convert the frame to grayscale, and blur it
frame = vs.read()
frame = imutils.resize(frame, width=400)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# grab the current timestamp and draw it on the frame
timestamp = datetime.datetime.now()
cv2.putText(
frame,
timestamp.strftime("%A %d %B %Y %I:%M:%S%p"),
(10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.35,
(0, 0, 255),
1,
)
# if the total number of frames has reached a sufficient
# number to construct a reasonable background model, then
# continue to process the frame
if total > frameCount:
# detect motion in the image
motion = md.detect(gray)
# check to see if motion was found in the frame
if motion is not None:
# unpack the tuple and draw the box surrounding the "motion area" on the output frame
(thresh, (minX, minY, maxX, maxY)) = motion
cv2.rectangle(frame, (minX, minY), (maxX, maxY), (0, 0, 255), 2)
# update the background model and increment the total number of frames read thus far
md.update(gray)
total += 1
# acquire the lock, set the output frame, and release the lock
with lock:
outputFrame = frame.copy()
def generate():
# grab global references to the output frame and lock variables
global outputFrame, lock
# loop over frames from the output stream
while True:
# wait until the lock is acquired
with lock:
# check if the output frame is available, otherwise skip the iteration of the loop
if outputFrame is None:
continue
# encode the frame in JPEG format
(flag, encodedImage) = cv2.imencode('.jpg', outputFrame)
# ensure the frame was successfully encoded
if not flag:
continue
# yield the output frame in the byte format
yield (
b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n'
)
@app.route('/')
def index():
# return the rendered template
return render_template('index.html')
@app.route('/video_feed')
def video_feed():
# return the response generated along with the specific media
# type (mime type)
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
# check to see if this is the main thread of execution
if __name__ == '__main__':
# construct the argument parser and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--ip', type=str, required=True, help='ip address of the device')
ap.add_argument(
'-o',
'--port',
type=int,
required=True,
help='ephemeral port number of the server (1024 to 65535)',
)
ap.add_argument(
'-f',
'--frame-count',
type=int,
default=32,
help='# of frames used to construct the background model',
)
args = vars(ap.parse_args())
# start a thread that will perform motion detection
t = threading.Thread(target=detect_motion, args=(args['frame_count'],))
t.daemon = True
t.start()
# start the flask app
app.run(host=args['ip'], port=args['port'], debug=True, threaded=True, use_reloader=False)
# release the video stream pointer
vs.stop()