import numpy as np import imutils import cv2 class SingleMotionDetector: def __init__(self, accumWeight=0.5): # store the accumulated weight factor self.accumWeight = accumWeight # initialize the background model self.bg = None def update(self, image): # if the background model is None, initialize it if self.bg is None: self.bg = image.copy().astype('float') return # update the background model by accumulating the weighted # average cv2.accumulateWeighted(image, self.bg, self.accumWeight) def detect(self, image, tVal=25): # compute the absolute difference between the background model # and the image passed in, then threshold the delta image delta = cv2.absdiff(self.bg.astype('uint8'), image) thresh = cv2.threshold(delta, tVal, 255, cv2.THRESH_BINARY)[1] # perform a series of erosions and dilations to remove small blobs thresh = cv2.erode(thresh, None, iterations=2) thresh = cv2.dilate(thresh, None, iterations=2) # find contours in the thresholded image and initialize # the minimum and maximum bounding box regions for motion cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) (minX, minY) = (np.inf, np.inf) (maxX, maxY) = (-np.inf, -np.inf) # if no contours were found, return None if len(cnts) == 0: return None # otherwise, loop over the contours for c in cnts: # compute the bounding box of the contour and use it to # update the minimum and maximum bounding box regions (x, y, w, h) = cv2.boundingRect(c) (minX, minY) = (min(minX, x), min(minY, y)) (maxX, maxY) = (max(maxX, x + w), max(maxY, y + h)) # otherwise, return a tuple of the thresholded image along with bounding box return (thresh, (minX, minY, maxX, maxY))