#!/usr/bin/env python3 # import the necessary packages from motion_detection import SingleMotionDetector from imutils.video import VideoStream from flask import Response from flask import Flask from flask import render_template import threading import argparse import datetime import imutils import time import cv2 # initialize the output frame and a lock used to ensure thread-safe # exchanges of the output frames (useful when multiple browsers/tabs # are viewing the stream) outputFrame = None lock = threading.Lock() # initialize a flask object app = Flask(__name__) # initialize the video stream and allow the camera sensor to # warmup # vs = VideoStream(usePiCamera=1).start() vs = VideoStream(src=0).start() time.sleep(2.0) def detect_motion(frameCount): # grab global references to the video stream, output frame, and lock variables global vs, outputFrame, lock # initialize the motion detector and the total number of frames read thus far md = SingleMotionDetector(accumWeight=0.1) total = 0 # loop over frames from the video stream while True: # read the next frame from the video stream, resize it, # convert the frame to grayscale, and blur it frame = vs.read() frame = imutils.resize(frame, width=400) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (7, 7), 0) # grab the current timestamp and draw it on the frame timestamp = datetime.datetime.now() cv2.putText( frame, timestamp.strftime("%A %d %B %Y %I:%M:%S%p"), (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (0, 0, 255), 1, ) # if the total number of frames has reached a sufficient # number to construct a reasonable background model, then # continue to process the frame if total > frameCount: # detect motion in the image motion = md.detect(gray) # check to see if motion was found in the frame if motion is not None: # unpack the tuple and draw the box surrounding the "motion area" on the output frame (thresh, (minX, minY, maxX, maxY)) = motion cv2.rectangle(frame, (minX, minY), (maxX, maxY), (0, 0, 255), 2) # update the background model and increment the total number of frames read thus far md.update(gray) total += 1 # acquire the lock, set the output frame, and release the lock with lock: outputFrame = frame.copy() def generate(): # grab global references to the output frame and lock variables global outputFrame, lock # loop over frames from the output stream while True: # wait until the lock is acquired with lock: # check if the output frame is available, otherwise skip the iteration of the loop if outputFrame is None: continue # encode the frame in JPEG format (flag, encodedImage) = cv2.imencode('.jpg', outputFrame) # ensure the frame was successfully encoded if not flag: continue # yield the output frame in the byte format yield ( b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n' ) @app.route('/') def index(): # return the rendered template return render_template('index.html') @app.route('/video_feed') def video_feed(): # return the response generated along with the specific media # type (mime type) return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame') # check to see if this is the main thread of execution if __name__ == '__main__': # construct the argument parser and parse command line arguments ap = argparse.ArgumentParser() ap.add_argument('-i', '--ip', type=str, required=True, help='ip address of the device') ap.add_argument( '-o', '--port', type=int, required=True, help='ephemeral port number of the server (1024 to 65535)', ) ap.add_argument( '-f', '--frame-count', type=int, default=32, help='# of frames used to construct the background model', ) args = vars(ap.parse_args()) # start a thread that will perform motion detection t = threading.Thread(target=detect_motion, args=(args['frame_count'],)) t.daemon = True t.start() # start the flask app app.run(host=args['ip'], port=args['port'], debug=True, threaded=True, use_reloader=False) # release the video stream pointer vs.stop()