59 lines
1.7 KiB
Python
59 lines
1.7 KiB
Python
#!/usr/bin/env python3
|
||
|
||
import cv2
|
||
import numpy as np
|
||
import openvino as ov
|
||
|
||
model_path = '../Models/yolov8n_openvino_model/yolov8n.xml'
|
||
image_path = '../../../assets/bus.jpg'
|
||
device_name = 'CPU'
|
||
|
||
|
||
def main():
|
||
# Загрузка OpenVINO
|
||
core = ov.Core()
|
||
model = core.read_model(model_path)
|
||
|
||
# Загрузка изображения
|
||
image = cv2.imread(image_path)
|
||
|
||
# Добавить N измерений
|
||
input_tensor = np.expand_dims(image, 0)
|
||
|
||
# Изменение формы модели в соответствии с ВxШ изображения
|
||
n, h, w, c = input_tensor.shape
|
||
model.reshape({model.input().get_any_name(): ov.PartialShape((n, c, h, w))})
|
||
|
||
# Предварительная обработка
|
||
ppp = ov.preprocess.PrePostProcessor(model)
|
||
ppp.input().tensor().set_element_type(ov.Type.u8).set_layout(ov.Layout('NHWC'))
|
||
ppp.input().model().set_layout(ov.Layout('NCHW'))
|
||
ppp.output().tensor().set_element_type(ov.Type.f32)
|
||
model = ppp.build()
|
||
|
||
compiled_model = core.compile_model(model, device_name)
|
||
results = compiled_model.infer_new_request({0: input_tensor})
|
||
|
||
# Output
|
||
predictions = next(iter(results.values()))
|
||
detections = predictions.reshape(-1, 7)
|
||
|
||
for detection in detections:
|
||
confidence = detection[2]
|
||
|
||
if confidence > 0.25:
|
||
class_id = int(detection[1])
|
||
|
||
xmin = int(detection[3] * w)
|
||
ymin = int(detection[4] * h)
|
||
xmax = int(detection[5] * w)
|
||
ymax = int(detection[6] * h)
|
||
|
||
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
|
||
|
||
cv2.imwrite('/tmp/py_openvino_result.bmp', image)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|