51 lines
1.2 KiB
Python
51 lines
1.2 KiB
Python
import cv2
|
|
from ultralytics import YOLO
|
|
|
|
# https://docs.ultralytics.com/modes/predict/#streaming-source-for-loop
|
|
|
|
# Load the YOLOv8 model
|
|
model = YOLO('yolov8m.pt')
|
|
|
|
# Open the video file
|
|
video_path = 'run.mp4'
|
|
cap = cv2.VideoCapture(video_path)
|
|
|
|
fps = 0
|
|
prev_frame_time = 0
|
|
new_frame_time = 0
|
|
|
|
# Loop through the video frames
|
|
while cap.isOpened():
|
|
# Read a frame from the video
|
|
success, frame = cap.read()
|
|
|
|
# Set current frame time
|
|
new_frame_time = time.time()
|
|
|
|
if success:
|
|
# Run YOLOv8 inference on the frame
|
|
results = model(frame)
|
|
|
|
# Visualize the results on the frame
|
|
annotated_frame = results[0].plot()
|
|
|
|
# Calculate FPS
|
|
fps = int(1 / (new_frame_time - prev_frame_time))
|
|
prev_frame_time = new_frame_time
|
|
|
|
# Display the annotated frame
|
|
cv2.imshow('YOLOv8 Inference', annotated_frame)
|
|
|
|
# Break the loop if 'q' is pressed
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
else:
|
|
# Break the loop if the end of the video is reached
|
|
break
|
|
|
|
print(fps)
|
|
|
|
# Release the video capture object and close the display window
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|