51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import cv2
 | 
						|
from ultralytics import YOLO
 | 
						|
 | 
						|
# https://docs.ultralytics.com/modes/predict/#streaming-source-for-loop
 | 
						|
 | 
						|
# Load the YOLOv8 model
 | 
						|
model = YOLO('yolov8m.pt')
 | 
						|
 | 
						|
# Open the video file
 | 
						|
video_path = 'run.mp4'
 | 
						|
cap = cv2.VideoCapture(video_path)
 | 
						|
 | 
						|
fps = 0
 | 
						|
prev_frame_time = 0
 | 
						|
new_frame_time = 0
 | 
						|
 | 
						|
# Loop through the video frames
 | 
						|
while cap.isOpened():
 | 
						|
    # Read a frame from the video
 | 
						|
    success, frame = cap.read()
 | 
						|
 | 
						|
    # Set current frame time
 | 
						|
    new_frame_time = time.time()
 | 
						|
 | 
						|
    if success:
 | 
						|
        # Run YOLOv8 inference on the frame
 | 
						|
        results = model(frame)
 | 
						|
 | 
						|
        # Visualize the results on the frame
 | 
						|
        annotated_frame = results[0].plot()
 | 
						|
 | 
						|
        # Calculate FPS
 | 
						|
        fps = int(1 / (new_frame_time - prev_frame_time))
 | 
						|
        prev_frame_time = new_frame_time
 | 
						|
 | 
						|
        # Display the annotated frame
 | 
						|
        cv2.imshow('YOLOv8 Inference', annotated_frame)
 | 
						|
 | 
						|
        # Break the loop if 'q' is pressed
 | 
						|
        if cv2.waitKey(1) & 0xFF == ord('q'):
 | 
						|
            break
 | 
						|
    else:
 | 
						|
        # Break the loop if the end of the video is reached
 | 
						|
        break
 | 
						|
 | 
						|
    print(fps)
 | 
						|
 | 
						|
# Release the video capture object and close the display window
 | 
						|
cap.release()
 | 
						|
cv2.destroyAllWindows()
 |