213 lines
9.0 KiB
C++
213 lines
9.0 KiB
C++
// Copyright (C) 2018-2023 Intel Corporation
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// https://docs.openvino.ai/2023.3/openvino_sample_hello_reshape_ssd.html
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
// clang-format off
|
|
#include "openvino/openvino.hpp"
|
|
#include "openvino/opsets/opset9.hpp"
|
|
|
|
#include "format_reader_ptr.h"
|
|
#include "samples/args_helper.hpp"
|
|
#include "samples/common.hpp"
|
|
#include "samples/slog.hpp"
|
|
// clang-format on
|
|
|
|
// thickness of a line (in pixels) to be used for bounding boxes
|
|
constexpr int BBOX_THICKNESS = 2;
|
|
|
|
using namespace ov::preprocess;
|
|
|
|
int main(int argc, char* argv[]) {
|
|
try {
|
|
// -------- Get OpenVINO runtime version -----------------------------
|
|
slog::info << ov::get_openvino_version() << slog::endl;
|
|
|
|
// --------------------------- Parsing and validation of input arguments
|
|
if (argc != 4) {
|
|
std::cout << "Usage : " << argv[0] << " <path_to_model> <path_to_image> <device>" << std::endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
const std::string model_path{argv[1]};
|
|
const std::string image_path{argv[2]};
|
|
const std::string device_name{argv[3]};
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 1. Initialize OpenVINO Runtime core
|
|
ov::Core core;
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 2. Read a model
|
|
slog::info << "Loading model files: " << model_path << slog::endl;
|
|
std::shared_ptr<ov::Model> model = core.read_model(model_path);
|
|
printInputAndOutputsInfo(*model);
|
|
|
|
// Step 3. Validate model inputs and outputs
|
|
OPENVINO_ASSERT(model->inputs().size() == 1, "Sample supports models with 1 input only");
|
|
OPENVINO_ASSERT(model->outputs().size() == 1, "Sample supports models with 1 output only");
|
|
|
|
// SSD has an additional post-processing DetectionOutput layer that simplifies output filtering,
|
|
// try to find it.
|
|
const ov::NodeVector ops = model->get_ops();
|
|
const auto it = std::find_if(ops.begin(), ops.end(), [](const std::shared_ptr<ov::Node>& node) {
|
|
return std::string{node->get_type_name()} ==
|
|
std::string{ov::opset9::DetectionOutput::get_type_info_static().name};
|
|
});
|
|
if (it == ops.end()) {
|
|
throw std::logic_error("model does not contain DetectionOutput layer");
|
|
}
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 4. Read input image
|
|
|
|
// Read input image without resize
|
|
FormatReader::ReaderPtr reader(image_path.c_str());
|
|
if (reader.get() == nullptr) {
|
|
std::cout << "Image " + image_path + " cannot be read!" << std::endl;
|
|
return 1;
|
|
}
|
|
|
|
std::shared_ptr<unsigned char> image_data = reader->getData();
|
|
size_t image_channels = 3;
|
|
size_t image_width = reader->width();
|
|
size_t image_height = reader->height();
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 5. Reshape model to image size and batch size
|
|
// assume model layout NCHW
|
|
const ov::Layout model_layout{"NCHW"};
|
|
|
|
ov::Shape tensor_shape = model->input().get_shape();
|
|
|
|
size_t batch_size = 1;
|
|
|
|
tensor_shape[ov::layout::batch_idx(model_layout)] = batch_size;
|
|
tensor_shape[ov::layout::channels_idx(model_layout)] = image_channels;
|
|
tensor_shape[ov::layout::height_idx(model_layout)] = image_height;
|
|
tensor_shape[ov::layout::width_idx(model_layout)] = image_width;
|
|
|
|
std::cout << "Reshape network to the image size = [" << image_height << "x" << image_width << "] " << std::endl;
|
|
model->reshape({{model->input().get_any_name(), tensor_shape}});
|
|
printInputAndOutputsInfo(*model);
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 6. Configure model preprocessing
|
|
const ov::Layout tensor_layout{"NHWC"};
|
|
|
|
// clang-format off
|
|
ov::preprocess::PrePostProcessor ppp = ov::preprocess::PrePostProcessor(model);
|
|
|
|
// 1) input() with no args assumes a model has a single input
|
|
ov::preprocess::InputInfo& input_info = ppp.input();
|
|
// 2) Set input tensor information:
|
|
// - precision of tensor is supposed to be 'u8'
|
|
// - layout of data is 'NHWC'
|
|
input_info.tensor().
|
|
set_element_type(ov::element::u8).
|
|
set_layout(tensor_layout);
|
|
// 3) Adding explicit preprocessing steps:
|
|
// - convert u8 to f32
|
|
// - convert layout to 'NCHW' (from 'NHWC' specified above at tensor layout)
|
|
ppp.input().preprocess().
|
|
convert_element_type(ov::element::f32).
|
|
convert_layout("NCHW");
|
|
// 4) Here we suppose model has 'NCHW' layout for input
|
|
input_info.model().set_layout("NCHW");
|
|
// 5) output () with no args assumes a model has a single output
|
|
ov::preprocess::OutputInfo& output_info = ppp.output();
|
|
// 6) declare output element type as FP32
|
|
output_info.tensor().set_element_type(ov::element::f32);
|
|
|
|
// 7) Apply preprocessing modifing the original 'model'
|
|
model = ppp.build();
|
|
// clang-format on
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 7. Loading a model to the device
|
|
ov::CompiledModel compiled_model = core.compile_model(model, device_name);
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 8. Create an infer request
|
|
ov::InferRequest infer_request = compiled_model.create_infer_request();
|
|
|
|
// Step 9. Fill model with input data
|
|
ov::Tensor input_tensor = infer_request.get_input_tensor();
|
|
|
|
// copy NHWC data from image to tensor with batch
|
|
unsigned char* image_data_ptr = image_data.get();
|
|
unsigned char* tensor_data_ptr = input_tensor.data<unsigned char>();
|
|
size_t image_size = image_width * image_height * image_channels;
|
|
for (size_t i = 0; i < image_size; i++) {
|
|
tensor_data_ptr[i] = image_data_ptr[i];
|
|
}
|
|
// -------------------------------------------------------------------
|
|
|
|
// Step 10. Do inference synchronously
|
|
infer_request.infer();
|
|
|
|
// Step 11. Get output data from the model
|
|
ov::Tensor output_tensor = infer_request.get_output_tensor();
|
|
|
|
ov::Shape output_shape = model->output().get_shape();
|
|
const size_t ssd_object_count = output_shape[2];
|
|
const size_t ssd_object_size = output_shape[3];
|
|
|
|
const float* detections = output_tensor.data<const float>();
|
|
// -------------------------------------------------------------------
|
|
|
|
std::vector<int> boxes;
|
|
std::vector<int> classes;
|
|
|
|
// Step 12. Parse SSD output
|
|
for (size_t object = 0; object < ssd_object_count; object++) {
|
|
int image_id = static_cast<int>(detections[object * ssd_object_size + 0]);
|
|
if (image_id < 0) {
|
|
break;
|
|
}
|
|
|
|
// detection, has the format: [image_id, label, conf, x_min, y_min, x_max, y_max]
|
|
int label = static_cast<int>(detections[object * ssd_object_size + 1]);
|
|
float confidence = detections[object * ssd_object_size + 2];
|
|
int xmin = static_cast<int>(detections[object * ssd_object_size + 3] * image_width);
|
|
int ymin = static_cast<int>(detections[object * ssd_object_size + 4] * image_height);
|
|
int xmax = static_cast<int>(detections[object * ssd_object_size + 5] * image_width);
|
|
int ymax = static_cast<int>(detections[object * ssd_object_size + 6] * image_height);
|
|
|
|
if (confidence > 0.5f) {
|
|
// collect only objects with >50% probability
|
|
classes.push_back(label);
|
|
boxes.push_back(xmin);
|
|
boxes.push_back(ymin);
|
|
boxes.push_back(xmax - xmin);
|
|
boxes.push_back(ymax - ymin);
|
|
|
|
std::cout << "[" << object << "," << label << "] element, prob = " << confidence << ", (" << xmin
|
|
<< "," << ymin << ")-(" << xmax << "," << ymax << ")" << std::endl;
|
|
}
|
|
}
|
|
|
|
// draw bounding boxes on the image
|
|
addRectangles(image_data.get(), image_height, image_width, boxes, classes, BBOX_THICKNESS);
|
|
|
|
const std::string image_name = "hello_reshape_ssd_output.bmp";
|
|
if (writeOutputBmp(image_name, image_data.get(), image_height, image_width)) {
|
|
std::cout << "The resulting image was saved in the file: " + image_name << std::endl;
|
|
} else {
|
|
throw std::logic_error(std::string("Can't create a file: ") + image_name);
|
|
}
|
|
|
|
} catch (const std::exception& ex) {
|
|
std::cerr << ex.what() << std::endl;
|
|
return EXIT_FAILURE;
|
|
}
|
|
std::cout << std::endl
|
|
<< "This sample is an API example, for any performance measurements "
|
|
"please use the dedicated benchmark_app tool"
|
|
<< std::endl;
|
|
return EXIT_SUCCESS;
|
|
}
|