snipplets.dev/projects/OpenVINO/Python/detect.py

61 lines
1.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
import cv2
import numpy as np
import openvino as ov
# model_path = './yolov8/yolov8n/yolov8n.xml'
model_path = './yolov8/yolov8s/yolov8s.xml'
# model_path = './intel/person-detection-retail-0013/FP16/person-detection-retail-0013.xml'
image_path = 'cat_dog.jpg'
device_name = 'CPU'
def main():
# Загрузка OpenVINO
core = ov.Core()
model = core.read_model(model_path)
# Загрузка изображения
image = cv2.imread(image_path)
# Добавить N измерений
input_tensor = np.expand_dims(image, 0)
# Изменение формы модели в соответствии с ВxШ изображения
n, h, w, c = input_tensor.shape
model.reshape({model.input().get_any_name(): ov.PartialShape((n, c, h, w))})
# Предварительная обработка
ppp = ov.preprocess.PrePostProcessor(model)
ppp.input().tensor().set_element_type(ov.Type.u8).set_layout(ov.Layout('NHWC'))
ppp.input().model().set_layout(ov.Layout('NCHW'))
ppp.output().tensor().set_element_type(ov.Type.f32) # f16
model = ppp.build()
compiled_model = core.compile_model(model, device_name)
results = compiled_model.infer_new_request({0: input_tensor})
# Output
predictions = next(iter(results.values()))
detections = predictions.reshape(-1, 7)
for detection in detections:
confidence = detection[2]
if confidence > 0.7:
class_id = int(detection[1])
xmin = int(detection[3] * w)
ymin = int(detection[4] * h)
xmax = int(detection[5] * w)
ymax = int(detection[6] * h)
cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.imwrite('/tmp/py_openvino_result.bmp', image)
if __name__ == '__main__':
main()