snipplets.dev/projects/Python/OpenCV_to_HTML/webstreaming.py
2023-11-12 22:45:23 +03:00

139 lines
4.6 KiB
Python

#!/usr/bin/env python3
# import the necessary packages
from motion_detection import SingleMotionDetector
from imutils.video import VideoStream
from flask import Response
from flask import Flask
from flask import render_template
import threading
import argparse
import datetime
import imutils
import time
import cv2
# initialize the output frame and a lock used to ensure thread-safe
# exchanges of the output frames (useful when multiple browsers/tabs
# are viewing the stream)
outputFrame = None
lock = threading.Lock()
# initialize a flask object
app = Flask(__name__)
# initialize the video stream and allow the camera sensor to
# warmup
# vs = VideoStream(usePiCamera=1).start()
vs = VideoStream(src=0).start()
time.sleep(2.0)
def detect_motion(frameCount):
# grab global references to the video stream, output frame, and lock variables
global vs, outputFrame, lock
# initialize the motion detector and the total number of frames read thus far
md = SingleMotionDetector(accumWeight=0.1)
total = 0
# loop over frames from the video stream
while True:
# read the next frame from the video stream, resize it,
# convert the frame to grayscale, and blur it
frame = vs.read()
frame = imutils.resize(frame, width=400)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
# grab the current timestamp and draw it on the frame
timestamp = datetime.datetime.now()
cv2.putText(
frame,
timestamp.strftime("%A %d %B %Y %I:%M:%S%p"),
(10, frame.shape[0] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.35,
(0, 0, 255),
1,
)
# if the total number of frames has reached a sufficient
# number to construct a reasonable background model, then
# continue to process the frame
if total > frameCount:
# detect motion in the image
motion = md.detect(gray)
# check to see if motion was found in the frame
if motion is not None:
# unpack the tuple and draw the box surrounding the "motion area" on the output frame
(thresh, (minX, minY, maxX, maxY)) = motion
cv2.rectangle(frame, (minX, minY), (maxX, maxY), (0, 0, 255), 2)
# update the background model and increment the total number of frames read thus far
md.update(gray)
total += 1
# acquire the lock, set the output frame, and release the lock
with lock:
outputFrame = frame.copy()
def generate():
# grab global references to the output frame and lock variables
global outputFrame, lock
# loop over frames from the output stream
while True:
# wait until the lock is acquired
with lock:
# check if the output frame is available, otherwise skip the iteration of the loop
if outputFrame is None:
continue
# encode the frame in JPEG format
(flag, encodedImage) = cv2.imencode('.jpg', outputFrame)
# ensure the frame was successfully encoded
if not flag:
continue
# yield the output frame in the byte format
yield (
b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + bytearray(encodedImage) + b'\r\n'
)
@app.route('/')
def index():
# return the rendered template
return render_template('index.html')
@app.route('/video_feed')
def video_feed():
# return the response generated along with the specific media
# type (mime type)
return Response(generate(), mimetype='multipart/x-mixed-replace; boundary=frame')
# check to see if this is the main thread of execution
if __name__ == '__main__':
# construct the argument parser and parse command line arguments
ap = argparse.ArgumentParser()
ap.add_argument('-i', '--ip', type=str, required=True, help='ip address of the device')
ap.add_argument(
'-o',
'--port',
type=int,
required=True,
help='ephemeral port number of the server (1024 to 65535)',
)
ap.add_argument(
'-f',
'--frame-count',
type=int,
default=32,
help='# of frames used to construct the background model',
)
args = vars(ap.parse_args())
# start a thread that will perform motion detection
t = threading.Thread(target=detect_motion, args=(args['frame_count'],))
t.daemon = True
t.start()
# start the flask app
app.run(host=args['ip'], port=args['port'], debug=True, threaded=True, use_reloader=False)
# release the video stream pointer
vs.stop()