Merge branch 'dynamic_timing'

This commit is contained in:
Tony DiCola 2015-06-26 15:17:28 -07:00
commit b6925ee001
5 changed files with 218 additions and 141 deletions

183
DHT.cpp
View File

@ -9,8 +9,9 @@ written by Adafruit Industries
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) { DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin; _pin = pin;
_type = type; _type = type;
_count = count; _firstreading = true;
firstreading = true; // Note that count is now ignored as the DHT reading algorithm adjusts itself
// basd on the speed of the processor.
} }
void DHT::begin(void) { void DHT::begin(void) {
@ -22,31 +23,32 @@ void DHT::begin(void) {
//boolean S == Scale. True == Farenheit; False == Celcius //boolean S == Scale. True == Farenheit; False == Celcius
float DHT::readTemperature(bool S) { float DHT::readTemperature(bool S) {
float f; float f = NAN;
if (read()) { if (read()) {
switch (_type) { switch (_type) {
case DHT11: case DHT11:
f = data[2]; f = data[2];
if(S) if(S) {
f = convertCtoF(f); f = convertCtoF(f);
}
return f; break;
case DHT22: case DHT22:
case DHT21: case DHT21:
f = data[2] & 0x7F; f = data[2] & 0x7F;
f *= 256; f *= 256;
f += data[3]; f += data[3];
f /= 10; f /= 10;
if (data[2] & 0x80) if (data[2] & 0x80) {
f *= -1; f *= -1;
if(S) }
if(S) {
f = convertCtoF(f); f = convertCtoF(f);
}
break;
}
}
return f; return f;
}
}
return NAN;
} }
float DHT::convertCtoF(float c) { float DHT::convertCtoF(float c) {
@ -58,22 +60,22 @@ float DHT::convertFtoC(float f) {
} }
float DHT::readHumidity(void) { float DHT::readHumidity(void) {
float f; float f = NAN;
if (read()) { if (read()) {
switch (_type) { switch (_type) {
case DHT11: case DHT11:
f = data[0]; f = data[0];
return f; break;
case DHT22: case DHT22:
case DHT21: case DHT21:
f = data[0]; f = data[0];
f *= 256; f *= 256;
f += data[1]; f += data[1];
f /= 10; f /= 10;
break;
}
}
return f; return f;
}
}
return NAN;
} }
float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) { float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) {
@ -90,90 +92,129 @@ float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) {
-0.00000199 * pow(tempFahrenheit, 2) * pow(percentHumidity, 2); -0.00000199 * pow(tempFahrenheit, 2) * pow(percentHumidity, 2);
} }
boolean DHT::read(void) { boolean DHT::read(void) {
uint8_t laststate = HIGH;
uint8_t counter = 0;
uint8_t j = 0, i;
unsigned long currenttime;
// Check if sensor was read less than two seconds ago and return early // Check if sensor was read less than two seconds ago and return early
// to use last reading. // to use last reading.
currenttime = millis(); uint32_t currenttime = millis();
if (currenttime < _lastreadtime) { if (currenttime < _lastreadtime) {
// ie there was a rollover // ie there was a rollover
_lastreadtime = 0; _lastreadtime = 0;
} }
if (!firstreading && ((currenttime - _lastreadtime) < 2000)) { if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) {
return true; // return last correct measurement return _lastresult; // return last correct measurement
//delay(2000 - (currenttime - _lastreadtime));
} }
firstreading = false; _firstreading = false;
/*
Serial.print("Currtime: "); Serial.print(currenttime);
Serial.print(" Lasttime: "); Serial.print(_lastreadtime);
*/
_lastreadtime = millis(); _lastreadtime = millis();
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0; data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// pull the pin high and wait 250 milliseconds // Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH); digitalWrite(_pin, HIGH);
delay(250); delay(250);
// now pull it low for ~20 milliseconds // First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT); pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW); digitalWrite(_pin, LOW);
delay(20); delay(20);
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
noInterrupts(); noInterrupts();
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH); digitalWrite(_pin, HIGH);
delayMicroseconds(40); delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT); pinMode(_pin, INPUT);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// read in timings // First expect a low signal for ~80 microseconds followed by a high signal
for ( i=0; i< MAXTIMINGS; i++) { // for ~80 microseconds again.
counter = 0; if (expectPulse(LOW) == 0) {
while (digitalRead(_pin) == laststate) { DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
counter++; _lastresult = false;
delayMicroseconds(1); return _lastresult;
if (counter == 255) {
break;
} }
} if (expectPulse(HIGH) == 0) {
laststate = digitalRead(_pin); DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
_lastresult = false;
if (counter == 255) break; return _lastresult;
// ignore first 3 transitions
if ((i >= 4) && (i%2 == 0)) {
// shove each bit into the storage bytes
data[j/8] <<= 1;
if (counter > _count)
data[j/8] |= 1;
j++;
} }
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = expectPulse(LOW);
if (lowCycles == 0) {
DEBUG_PRINTLN(F("Timeout waiting for bit low pulse."));
_lastresult = false;
return _lastresult;
}
uint32_t highCycles = expectPulse(HIGH);
if (highCycles == 0) {
DEBUG_PRINTLN(F("Timeout waiting for bit high pulse."));
_lastresult = false;
return _lastresult;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
} }
// Re-enable interrupts, timing critical code is complete.
interrupts(); interrupts();
/* DEBUG_PRINTLN(F("Received:"));
Serial.println(j, DEC); DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
Serial.print(data[0], HEX); Serial.print(", "); DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
Serial.print(data[1], HEX); Serial.print(", "); DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
Serial.print(data[2], HEX); Serial.print(", "); DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
Serial.print(data[3], HEX); Serial.print(", "); DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
Serial.print(data[4], HEX); Serial.print(" =? "); DEBUG_PRINTLN(data[0] + data[1] + data[2] + data[3], HEX);
Serial.println(data[0] + data[1] + data[2] + data[3], HEX);
*/
// check we read 40 bits and that the checksum matches // Check we read 40 bits and that the checksum matches.
if ((j >= 40) && if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
(data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) ) { _lastresult = true;
return true; return _lastresult;
}
else {
DEBUG_PRINTLN(F("Checksum failure!"));
_lastresult = false;
return _lastresult;
} }
}
return false; // Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
uint32_t DHT::expectPulse(bool level) {
uint32_t count = 0;
uint32_t end = micros() + 1000;
// Loop while counting cycles until the level changes.
while (digitalRead(_pin) == level) {
count++;
if (micros() >= end) {
// Exceeded timeout waiting for level to change, fail.
return 0;
}
}
return count;
} }

43
DHT.h
View File

@ -1,32 +1,41 @@
/* DHT library
MIT license
written by Adafruit Industries
*/
#ifndef DHT_H #ifndef DHT_H
#define DHT_H #define DHT_H
#if ARDUINO >= 100 #if ARDUINO >= 100
#include "Arduino.h" #include "Arduino.h"
#else #else
#include "WProgram.h" #include "WProgram.h"
#endif #endif
/* DHT library
MIT license // Uncomment to enable printing out nice debug messages.
written by Adafruit Industries //#define DHT_DEBUG
*/
// how many timing transitions we need to keep track of. 2 * number bits + extra // Define where debug output will be printed.
#define MAXTIMINGS 85 #define DEBUG_PRINTER Serial
// Setup debug printing macros.
#ifdef DHT_DEBUG
#define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); }
#define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); }
#else
#define DEBUG_PRINT(...) {}
#define DEBUG_PRINTLN(...) {}
#endif
// Define types of sensors.
#define DHT11 11 #define DHT11 11
#define DHT22 22 #define DHT22 22
#define DHT21 21 #define DHT21 21
#define AM2301 21 #define AM2301 21
class DHT {
private:
uint8_t data[6];
uint8_t _pin, _type, _count;
unsigned long _lastreadtime;
boolean firstreading;
class DHT {
public: public:
DHT(uint8_t pin, uint8_t type, uint8_t count=6); DHT(uint8_t pin, uint8_t type, uint8_t count=6);
void begin(void); void begin(void);
@ -37,5 +46,15 @@ class DHT {
float readHumidity(void); float readHumidity(void);
boolean read(void); boolean read(void);
private:
uint8_t data[6];
uint8_t _pin, _type;
uint32_t _lastreadtime;
bool _firstreading;
bool _lastresult;
uint32_t expectPulse(bool level);
}; };
#endif #endif

View File

@ -17,16 +17,11 @@
// Connect pin 4 (on the right) of the sensor to GROUND // Connect pin 4 (on the right) of the sensor to GROUND
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor // Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor
// Initialize DHT sensor for normal 16mhz Arduino // Initialize DHT sensor.
// Note that older versions of this library took an optional third parameter to
// tweak the timings for faster processors. This parameter is no longer needed
// as the current DHT reading algorithm adjusts itself to work on faster procs.
DHT dht(DHTPIN, DHTTYPE); DHT dht(DHTPIN, DHTTYPE);
// NOTE: For working with a faster chip, like an Arduino Due or Teensy, you
// might need to increase the threshold for cycle counts considered a 1 or 0.
// You can do this by passing a 3rd parameter for this threshold. It's a bit
// of fiddling to find the right value, but in general the faster the CPU the
// higher the value. The default for a 16mhz AVR is a value of 6. For an
// Arduino Due that runs at 84mhz a value of 30 works.
// Example to initialize DHT sensor for Arduino Due:
//DHT dht(DHTPIN, DHTTYPE, 30);
void setup() { void setup() {
Serial.begin(9600); Serial.begin(9600);

22
keywords.txt Normal file
View File

@ -0,0 +1,22 @@
###########################################
# Syntax Coloring Map For DHT-sensor-library
###########################################
###########################################
# Datatypes (KEYWORD1)
###########################################
DHT KEYWORD1
###########################################
# Methods and Functions (KEYWORD2)
###########################################
begin KEYWORD2
readTemperature KEYWORD2
convertCtoF KEYWORD2
convertFtoC KEYWORD2
computeHeatIndex KEYWORD2
readHumidity KEYWORD2
read KEYWORD2

View File

@ -1,5 +1,5 @@
name=DHT sensor library name=DHT sensor library
version=1.0.0 version=1.1.0
author=Adafruit author=Adafruit
maintainer=Adafruit <info@adafruit.com> maintainer=Adafruit <info@adafruit.com>
sentence=Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors sentence=Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors