mirror of
https://github.com/adafruit/DHT-sensor-library.git
synced 2023-10-23 22:20:38 +03:00
Merge branch 'dynamic_timing'
This commit is contained in:
commit
b6925ee001
183
DHT.cpp
183
DHT.cpp
@ -9,8 +9,9 @@ written by Adafruit Industries
|
|||||||
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
|
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
|
||||||
_pin = pin;
|
_pin = pin;
|
||||||
_type = type;
|
_type = type;
|
||||||
_count = count;
|
_firstreading = true;
|
||||||
firstreading = true;
|
// Note that count is now ignored as the DHT reading algorithm adjusts itself
|
||||||
|
// basd on the speed of the processor.
|
||||||
}
|
}
|
||||||
|
|
||||||
void DHT::begin(void) {
|
void DHT::begin(void) {
|
||||||
@ -22,31 +23,32 @@ void DHT::begin(void) {
|
|||||||
|
|
||||||
//boolean S == Scale. True == Farenheit; False == Celcius
|
//boolean S == Scale. True == Farenheit; False == Celcius
|
||||||
float DHT::readTemperature(bool S) {
|
float DHT::readTemperature(bool S) {
|
||||||
float f;
|
float f = NAN;
|
||||||
|
|
||||||
if (read()) {
|
if (read()) {
|
||||||
switch (_type) {
|
switch (_type) {
|
||||||
case DHT11:
|
case DHT11:
|
||||||
f = data[2];
|
f = data[2];
|
||||||
if(S)
|
if(S) {
|
||||||
f = convertCtoF(f);
|
f = convertCtoF(f);
|
||||||
|
}
|
||||||
return f;
|
break;
|
||||||
case DHT22:
|
case DHT22:
|
||||||
case DHT21:
|
case DHT21:
|
||||||
f = data[2] & 0x7F;
|
f = data[2] & 0x7F;
|
||||||
f *= 256;
|
f *= 256;
|
||||||
f += data[3];
|
f += data[3];
|
||||||
f /= 10;
|
f /= 10;
|
||||||
if (data[2] & 0x80)
|
if (data[2] & 0x80) {
|
||||||
f *= -1;
|
f *= -1;
|
||||||
if(S)
|
}
|
||||||
|
if(S) {
|
||||||
f = convertCtoF(f);
|
f = convertCtoF(f);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
return f;
|
return f;
|
||||||
}
|
|
||||||
}
|
|
||||||
return NAN;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float DHT::convertCtoF(float c) {
|
float DHT::convertCtoF(float c) {
|
||||||
@ -58,22 +60,22 @@ float DHT::convertFtoC(float f) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
float DHT::readHumidity(void) {
|
float DHT::readHumidity(void) {
|
||||||
float f;
|
float f = NAN;
|
||||||
if (read()) {
|
if (read()) {
|
||||||
switch (_type) {
|
switch (_type) {
|
||||||
case DHT11:
|
case DHT11:
|
||||||
f = data[0];
|
f = data[0];
|
||||||
return f;
|
break;
|
||||||
case DHT22:
|
case DHT22:
|
||||||
case DHT21:
|
case DHT21:
|
||||||
f = data[0];
|
f = data[0];
|
||||||
f *= 256;
|
f *= 256;
|
||||||
f += data[1];
|
f += data[1];
|
||||||
f /= 10;
|
f /= 10;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
return f;
|
return f;
|
||||||
}
|
|
||||||
}
|
|
||||||
return NAN;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) {
|
float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) {
|
||||||
@ -90,90 +92,129 @@ float DHT::computeHeatIndex(float tempFahrenheit, float percentHumidity) {
|
|||||||
-0.00000199 * pow(tempFahrenheit, 2) * pow(percentHumidity, 2);
|
-0.00000199 * pow(tempFahrenheit, 2) * pow(percentHumidity, 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
boolean DHT::read(void) {
|
boolean DHT::read(void) {
|
||||||
uint8_t laststate = HIGH;
|
|
||||||
uint8_t counter = 0;
|
|
||||||
uint8_t j = 0, i;
|
|
||||||
unsigned long currenttime;
|
|
||||||
|
|
||||||
// Check if sensor was read less than two seconds ago and return early
|
// Check if sensor was read less than two seconds ago and return early
|
||||||
// to use last reading.
|
// to use last reading.
|
||||||
currenttime = millis();
|
uint32_t currenttime = millis();
|
||||||
if (currenttime < _lastreadtime) {
|
if (currenttime < _lastreadtime) {
|
||||||
// ie there was a rollover
|
// ie there was a rollover
|
||||||
_lastreadtime = 0;
|
_lastreadtime = 0;
|
||||||
}
|
}
|
||||||
if (!firstreading && ((currenttime - _lastreadtime) < 2000)) {
|
if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) {
|
||||||
return true; // return last correct measurement
|
return _lastresult; // return last correct measurement
|
||||||
//delay(2000 - (currenttime - _lastreadtime));
|
|
||||||
}
|
}
|
||||||
firstreading = false;
|
_firstreading = false;
|
||||||
/*
|
|
||||||
Serial.print("Currtime: "); Serial.print(currenttime);
|
|
||||||
Serial.print(" Lasttime: "); Serial.print(_lastreadtime);
|
|
||||||
*/
|
|
||||||
_lastreadtime = millis();
|
_lastreadtime = millis();
|
||||||
|
|
||||||
|
// Reset 40 bits of received data to zero.
|
||||||
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
|
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
|
||||||
|
|
||||||
// pull the pin high and wait 250 milliseconds
|
// Send start signal. See DHT datasheet for full signal diagram:
|
||||||
|
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
|
||||||
|
|
||||||
|
// Go into high impedence state to let pull-up raise data line level and
|
||||||
|
// start the reading process.
|
||||||
digitalWrite(_pin, HIGH);
|
digitalWrite(_pin, HIGH);
|
||||||
delay(250);
|
delay(250);
|
||||||
|
|
||||||
// now pull it low for ~20 milliseconds
|
// First set data line low for 20 milliseconds.
|
||||||
pinMode(_pin, OUTPUT);
|
pinMode(_pin, OUTPUT);
|
||||||
digitalWrite(_pin, LOW);
|
digitalWrite(_pin, LOW);
|
||||||
delay(20);
|
delay(20);
|
||||||
|
|
||||||
|
// Turn off interrupts temporarily because the next sections are timing critical
|
||||||
|
// and we don't want any interruptions.
|
||||||
noInterrupts();
|
noInterrupts();
|
||||||
|
|
||||||
|
// End the start signal by setting data line high for 40 microseconds.
|
||||||
digitalWrite(_pin, HIGH);
|
digitalWrite(_pin, HIGH);
|
||||||
delayMicroseconds(40);
|
delayMicroseconds(40);
|
||||||
|
|
||||||
|
// Now start reading the data line to get the value from the DHT sensor.
|
||||||
pinMode(_pin, INPUT);
|
pinMode(_pin, INPUT);
|
||||||
|
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
|
||||||
|
|
||||||
// read in timings
|
// First expect a low signal for ~80 microseconds followed by a high signal
|
||||||
for ( i=0; i< MAXTIMINGS; i++) {
|
// for ~80 microseconds again.
|
||||||
counter = 0;
|
if (expectPulse(LOW) == 0) {
|
||||||
while (digitalRead(_pin) == laststate) {
|
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
|
||||||
counter++;
|
_lastresult = false;
|
||||||
delayMicroseconds(1);
|
return _lastresult;
|
||||||
if (counter == 255) {
|
|
||||||
break;
|
|
||||||
}
|
}
|
||||||
}
|
if (expectPulse(HIGH) == 0) {
|
||||||
laststate = digitalRead(_pin);
|
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
|
||||||
|
_lastresult = false;
|
||||||
if (counter == 255) break;
|
return _lastresult;
|
||||||
|
|
||||||
// ignore first 3 transitions
|
|
||||||
if ((i >= 4) && (i%2 == 0)) {
|
|
||||||
// shove each bit into the storage bytes
|
|
||||||
data[j/8] <<= 1;
|
|
||||||
if (counter > _count)
|
|
||||||
data[j/8] |= 1;
|
|
||||||
j++;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
|
||||||
|
// microsecond low pulse followed by a variable length high pulse. If the
|
||||||
|
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
|
||||||
|
// then it's a 1. We measure the cycle count of the initial 50us low pulse
|
||||||
|
// and use that to compare to the cycle count of the high pulse to determine
|
||||||
|
// if the bit is a 0 (high state cycle count < low state cycle count), or a
|
||||||
|
// 1 (high state cycle count > low state cycle count).
|
||||||
|
for (int i=0; i<40; ++i) {
|
||||||
|
uint32_t lowCycles = expectPulse(LOW);
|
||||||
|
if (lowCycles == 0) {
|
||||||
|
DEBUG_PRINTLN(F("Timeout waiting for bit low pulse."));
|
||||||
|
_lastresult = false;
|
||||||
|
return _lastresult;
|
||||||
|
}
|
||||||
|
uint32_t highCycles = expectPulse(HIGH);
|
||||||
|
if (highCycles == 0) {
|
||||||
|
DEBUG_PRINTLN(F("Timeout waiting for bit high pulse."));
|
||||||
|
_lastresult = false;
|
||||||
|
return _lastresult;
|
||||||
|
}
|
||||||
|
data[i/8] <<= 1;
|
||||||
|
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
|
||||||
|
if (highCycles > lowCycles) {
|
||||||
|
// High cycles are greater than 50us low cycle count, must be a 1.
|
||||||
|
data[i/8] |= 1;
|
||||||
|
}
|
||||||
|
// Else high cycles are less than (or equal to, a weird case) the 50us low
|
||||||
|
// cycle count so this must be a zero. Nothing needs to be changed in the
|
||||||
|
// stored data.
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Re-enable interrupts, timing critical code is complete.
|
||||||
interrupts();
|
interrupts();
|
||||||
|
|
||||||
/*
|
DEBUG_PRINTLN(F("Received:"));
|
||||||
Serial.println(j, DEC);
|
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
|
||||||
Serial.print(data[0], HEX); Serial.print(", ");
|
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
|
||||||
Serial.print(data[1], HEX); Serial.print(", ");
|
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
|
||||||
Serial.print(data[2], HEX); Serial.print(", ");
|
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
|
||||||
Serial.print(data[3], HEX); Serial.print(", ");
|
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
|
||||||
Serial.print(data[4], HEX); Serial.print(" =? ");
|
DEBUG_PRINTLN(data[0] + data[1] + data[2] + data[3], HEX);
|
||||||
Serial.println(data[0] + data[1] + data[2] + data[3], HEX);
|
|
||||||
*/
|
|
||||||
|
|
||||||
// check we read 40 bits and that the checksum matches
|
// Check we read 40 bits and that the checksum matches.
|
||||||
if ((j >= 40) &&
|
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
|
||||||
(data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) ) {
|
_lastresult = true;
|
||||||
return true;
|
return _lastresult;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
DEBUG_PRINTLN(F("Checksum failure!"));
|
||||||
|
_lastresult = false;
|
||||||
|
return _lastresult;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return false;
|
// Expect the signal line to be at the specified level for a period of time and
|
||||||
|
// return a count of loop cycles spent at that level (this cycle count can be
|
||||||
|
// used to compare the relative time of two pulses). If more than a millisecond
|
||||||
|
// ellapses without the level changing then the call fails with a 0 response.
|
||||||
|
uint32_t DHT::expectPulse(bool level) {
|
||||||
|
uint32_t count = 0;
|
||||||
|
uint32_t end = micros() + 1000;
|
||||||
|
// Loop while counting cycles until the level changes.
|
||||||
|
while (digitalRead(_pin) == level) {
|
||||||
|
count++;
|
||||||
|
if (micros() >= end) {
|
||||||
|
// Exceeded timeout waiting for level to change, fail.
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return count;
|
||||||
}
|
}
|
||||||
|
43
DHT.h
43
DHT.h
@ -1,32 +1,41 @@
|
|||||||
|
/* DHT library
|
||||||
|
|
||||||
|
MIT license
|
||||||
|
written by Adafruit Industries
|
||||||
|
*/
|
||||||
#ifndef DHT_H
|
#ifndef DHT_H
|
||||||
#define DHT_H
|
#define DHT_H
|
||||||
|
|
||||||
#if ARDUINO >= 100
|
#if ARDUINO >= 100
|
||||||
#include "Arduino.h"
|
#include "Arduino.h"
|
||||||
#else
|
#else
|
||||||
#include "WProgram.h"
|
#include "WProgram.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/* DHT library
|
|
||||||
|
|
||||||
MIT license
|
// Uncomment to enable printing out nice debug messages.
|
||||||
written by Adafruit Industries
|
//#define DHT_DEBUG
|
||||||
*/
|
|
||||||
|
|
||||||
// how many timing transitions we need to keep track of. 2 * number bits + extra
|
// Define where debug output will be printed.
|
||||||
#define MAXTIMINGS 85
|
#define DEBUG_PRINTER Serial
|
||||||
|
|
||||||
|
// Setup debug printing macros.
|
||||||
|
#ifdef DHT_DEBUG
|
||||||
|
#define DEBUG_PRINT(...) { DEBUG_PRINTER.print(__VA_ARGS__); }
|
||||||
|
#define DEBUG_PRINTLN(...) { DEBUG_PRINTER.println(__VA_ARGS__); }
|
||||||
|
#else
|
||||||
|
#define DEBUG_PRINT(...) {}
|
||||||
|
#define DEBUG_PRINTLN(...) {}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Define types of sensors.
|
||||||
#define DHT11 11
|
#define DHT11 11
|
||||||
#define DHT22 22
|
#define DHT22 22
|
||||||
#define DHT21 21
|
#define DHT21 21
|
||||||
#define AM2301 21
|
#define AM2301 21
|
||||||
|
|
||||||
class DHT {
|
|
||||||
private:
|
|
||||||
uint8_t data[6];
|
|
||||||
uint8_t _pin, _type, _count;
|
|
||||||
unsigned long _lastreadtime;
|
|
||||||
boolean firstreading;
|
|
||||||
|
|
||||||
|
class DHT {
|
||||||
public:
|
public:
|
||||||
DHT(uint8_t pin, uint8_t type, uint8_t count=6);
|
DHT(uint8_t pin, uint8_t type, uint8_t count=6);
|
||||||
void begin(void);
|
void begin(void);
|
||||||
@ -37,5 +46,15 @@ class DHT {
|
|||||||
float readHumidity(void);
|
float readHumidity(void);
|
||||||
boolean read(void);
|
boolean read(void);
|
||||||
|
|
||||||
|
private:
|
||||||
|
uint8_t data[6];
|
||||||
|
uint8_t _pin, _type;
|
||||||
|
uint32_t _lastreadtime;
|
||||||
|
bool _firstreading;
|
||||||
|
bool _lastresult;
|
||||||
|
|
||||||
|
uint32_t expectPulse(bool level);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -17,16 +17,11 @@
|
|||||||
// Connect pin 4 (on the right) of the sensor to GROUND
|
// Connect pin 4 (on the right) of the sensor to GROUND
|
||||||
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor
|
// Connect a 10K resistor from pin 2 (data) to pin 1 (power) of the sensor
|
||||||
|
|
||||||
// Initialize DHT sensor for normal 16mhz Arduino
|
// Initialize DHT sensor.
|
||||||
|
// Note that older versions of this library took an optional third parameter to
|
||||||
|
// tweak the timings for faster processors. This parameter is no longer needed
|
||||||
|
// as the current DHT reading algorithm adjusts itself to work on faster procs.
|
||||||
DHT dht(DHTPIN, DHTTYPE);
|
DHT dht(DHTPIN, DHTTYPE);
|
||||||
// NOTE: For working with a faster chip, like an Arduino Due or Teensy, you
|
|
||||||
// might need to increase the threshold for cycle counts considered a 1 or 0.
|
|
||||||
// You can do this by passing a 3rd parameter for this threshold. It's a bit
|
|
||||||
// of fiddling to find the right value, but in general the faster the CPU the
|
|
||||||
// higher the value. The default for a 16mhz AVR is a value of 6. For an
|
|
||||||
// Arduino Due that runs at 84mhz a value of 30 works.
|
|
||||||
// Example to initialize DHT sensor for Arduino Due:
|
|
||||||
//DHT dht(DHTPIN, DHTTYPE, 30);
|
|
||||||
|
|
||||||
void setup() {
|
void setup() {
|
||||||
Serial.begin(9600);
|
Serial.begin(9600);
|
||||||
|
22
keywords.txt
Normal file
22
keywords.txt
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
###########################################
|
||||||
|
# Syntax Coloring Map For DHT-sensor-library
|
||||||
|
###########################################
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Datatypes (KEYWORD1)
|
||||||
|
###########################################
|
||||||
|
|
||||||
|
DHT KEYWORD1
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Methods and Functions (KEYWORD2)
|
||||||
|
###########################################
|
||||||
|
|
||||||
|
begin KEYWORD2
|
||||||
|
readTemperature KEYWORD2
|
||||||
|
convertCtoF KEYWORD2
|
||||||
|
convertFtoC KEYWORD2
|
||||||
|
computeHeatIndex KEYWORD2
|
||||||
|
readHumidity KEYWORD2
|
||||||
|
read KEYWORD2
|
||||||
|
|
@ -1,5 +1,5 @@
|
|||||||
name=DHT sensor library
|
name=DHT sensor library
|
||||||
version=1.0.0
|
version=1.1.0
|
||||||
author=Adafruit
|
author=Adafruit
|
||||||
maintainer=Adafruit <info@adafruit.com>
|
maintainer=Adafruit <info@adafruit.com>
|
||||||
sentence=Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors
|
sentence=Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors
|
||||||
|
Loading…
Reference in New Issue
Block a user