/* DHT library MIT license written by Adafruit Industries */ #include "DHT.h" #define MIN_INTERVAL 2000 DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) { _pin = pin; _type = type; _bit = digitalPinToBitMask(pin); _port = digitalPinToPort(pin); _maxcycles = microsecondsToClockCycles(1000); // 1 millisecond timeout for // reading pulses from DHT sensor. // Note that count is now ignored as the DHT reading algorithm adjusts itself // basd on the speed of the processor. } void DHT::begin(void) { // set up the pins! pinMode(_pin, INPUT); digitalWrite(_pin, HIGH); // Using this value makes sure that millis() - lastreadtime will be // >= MIN_INTERVAL right away. Note that this assignment wraps around, // but so will the subtraction. _lastreadtime = -MIN_INTERVAL; DEBUG_PRINT("Max clock cycles: "); DEBUG_PRINTLN(_maxcycles, DEC); } //boolean S == Scale. True == Fahrenheit; False == Celcius float DHT::readTemperature(bool S, bool force) { float f = NAN; if (read(force)) { switch (_type) { case DHT11: f = data[2]; if(S) { f = convertCtoF(f); } break; case DHT22: case DHT21: f = data[2] & 0x7F; f *= 256; f += data[3]; f /= 10; if (data[2] & 0x80) { f *= -1; } if(S) { f = convertCtoF(f); } break; } } return f; } float DHT::convertCtoF(float c) { return c * 9 / 5 + 32; } float DHT::convertFtoC(float f) { return (f - 32) * 5 / 9; } float DHT::readHumidity(bool force) { float f = NAN; if (read()) { switch (_type) { case DHT11: f = data[0]; break; case DHT22: case DHT21: f = data[0]; f *= 256; f += data[1]; f /= 10; break; } } return f; } //boolean isFahrenheit: True == Fahrenheit; False == Celcius float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) { // Adapted from equation at: https://github.com/adafruit/DHT-sensor-library/issues/9 and // Wikipedia: http://en.wikipedia.org/wiki/Heat_index if (!isFahrenheit) { // Celsius heat index calculation. return -8.784695 + 1.61139411 * temperature + 2.338549 * percentHumidity + -0.14611605 * temperature*percentHumidity + -0.01230809 * pow(temperature, 2) + -0.01642482 * pow(percentHumidity, 2) + 0.00221173 * pow(temperature, 2) * percentHumidity + 0.00072546 * temperature*pow(percentHumidity, 2) + -0.00000358 * pow(temperature, 2) * pow(percentHumidity, 2); } else { // Fahrenheit heat index calculation. return -42.379 + 2.04901523 * temperature + 10.14333127 * percentHumidity + -0.22475541 * temperature*percentHumidity + -0.00683783 * pow(temperature, 2) + -0.05481717 * pow(percentHumidity, 2) + 0.00122874 * pow(temperature, 2) * percentHumidity + 0.00085282 * temperature*pow(percentHumidity, 2) + -0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2); } } boolean DHT::read(bool force) { // Check if sensor was read less than two seconds ago and return early // to use last reading. uint32_t currenttime = millis(); if (!force && ((currenttime - _lastreadtime) < 2000)) { return _lastresult; // return last correct measurement } _lastreadtime = currenttime; // Reset 40 bits of received data to zero. data[0] = data[1] = data[2] = data[3] = data[4] = 0; // Send start signal. See DHT datasheet for full signal diagram: // http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf // Go into high impedence state to let pull-up raise data line level and // start the reading process. digitalWrite(_pin, HIGH); delay(250); // First set data line low for 20 milliseconds. pinMode(_pin, OUTPUT); digitalWrite(_pin, LOW); delay(20); uint32_t cycles[80]; { // Turn off interrupts temporarily because the next sections are timing critical // and we don't want any interruptions. InterruptLock lock; // End the start signal by setting data line high for 40 microseconds. digitalWrite(_pin, HIGH); delayMicroseconds(40); // Now start reading the data line to get the value from the DHT sensor. pinMode(_pin, INPUT); delayMicroseconds(10); // Delay a bit to let sensor pull data line low. // First expect a low signal for ~80 microseconds followed by a high signal // for ~80 microseconds again. if (expectPulse(LOW) == 0) { DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse.")); _lastresult = false; return _lastresult; } if (expectPulse(HIGH) == 0) { DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse.")); _lastresult = false; return _lastresult; } // Now read the 40 bits sent by the sensor. Each bit is sent as a 50 // microsecond low pulse followed by a variable length high pulse. If the // high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds // then it's a 1. We measure the cycle count of the initial 50us low pulse // and use that to compare to the cycle count of the high pulse to determine // if the bit is a 0 (high state cycle count < low state cycle count), or a // 1 (high state cycle count > low state cycle count). Note that for speed all // the pulses are read into a array and then examined in a later step. for (int i=0; i<80; i+=2) { cycles[i] = expectPulse(LOW); cycles[i+1] = expectPulse(HIGH); } } // Timing critical code is now complete. // Inspect pulses and determine which ones are 0 (high state cycle count < low // state cycle count), or 1 (high state cycle count > low state cycle count). for (int i=0; i<40; ++i) { uint32_t lowCycles = cycles[2*i]; uint32_t highCycles = cycles[2*i+1]; if ((lowCycles == 0) || (highCycles == 0)) { DEBUG_PRINTLN(F("Timeout waiting for pulse.")); _lastresult = false; return _lastresult; } data[i/8] <<= 1; // Now compare the low and high cycle times to see if the bit is a 0 or 1. if (highCycles > lowCycles) { // High cycles are greater than 50us low cycle count, must be a 1. data[i/8] |= 1; } // Else high cycles are less than (or equal to, a weird case) the 50us low // cycle count so this must be a zero. Nothing needs to be changed in the // stored data. } DEBUG_PRINTLN(F("Received:")); DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", ")); DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? ")); DEBUG_PRINTLN((data[0] + data[1] + data[2] + data[3]) & 0xFF, HEX); // Check we read 40 bits and that the checksum matches. if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) { _lastresult = true; return _lastresult; } else { DEBUG_PRINTLN(F("Checksum failure!")); _lastresult = false; return _lastresult; } } // Expect the signal line to be at the specified level for a period of time and // return a count of loop cycles spent at that level (this cycle count can be // used to compare the relative time of two pulses). If more than a millisecond // ellapses without the level changing then the call fails with a 0 response. // This is adapted from Arduino's pulseInLong function (which is only available // in the very latest IDE versions): // https://github.com/arduino/Arduino/blob/master/hardware/arduino/avr/cores/arduino/wiring_pulse.c uint32_t DHT::expectPulse(bool level) { uint32_t count = 0; // On AVR platforms use direct GPIO port access as it's much faster and better // for catching pulses that are 10's of microseconds in length: #ifdef __AVR uint8_t portState = level ? _bit : 0; while ((*portInputRegister(_port) & _bit) == portState) { if (count++ >= _maxcycles) { return 0; // Exceeded timeout, fail. } } // Otherwise fall back to using digitalRead (this seems to be necessary on ESP8266 // right now, perhaps bugs in direct port access functions?). #else while (digitalRead(_pin) == level) { if (count++ >= _maxcycles) { return 0; // Exceeded timeout, fail. } } #endif return count; }