DHT-sensor-library/DHT.cpp

238 lines
7.2 KiB
C++

/* DHT library
MIT license
written by Adafruit Industries
*/
#include "DHT.h"
DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
_pin = pin;
_type = type;
_firstreading = true;
// Note that count is now ignored as the DHT reading algorithm adjusts itself
// basd on the speed of the processor.
}
void DHT::begin(void) {
// set up the pins!
pinMode(_pin, INPUT);
digitalWrite(_pin, HIGH);
_lastreadtime = 0;
}
//boolean S == Scale. True == Fahrenheit; False == Celcius
float DHT::readTemperature(bool S) {
float f = NAN;
if (read()) {
switch (_type) {
case DHT11:
f = data[2];
if(S) {
f = convertCtoF(f);
}
break;
case DHT22:
case DHT21:
f = data[2] & 0x7F;
f *= 256;
f += data[3];
f /= 10;
if (data[2] & 0x80) {
f *= -1;
}
if(S) {
f = convertCtoF(f);
}
break;
}
}
return f;
}
float DHT::convertCtoF(float c) {
return c * 9 / 5 + 32;
}
float DHT::convertFtoC(float f) {
return (f - 32) * 5 / 9;
}
float DHT::readHumidity(void) {
float f = NAN;
if (read()) {
switch (_type) {
case DHT11:
f = data[0];
break;
case DHT22:
case DHT21:
f = data[0];
f *= 256;
f += data[1];
f /= 10;
break;
}
}
return f;
}
//boolean isFahrenheit: True == Fahrenheit; False == Celcius
float DHT::computeHeatIndex(float temperature, float percentHumidity, bool isFahrenheit) {
// Adapted from equation at: https://github.com/adafruit/DHT-sensor-library/issues/9 and
// Wikipedia: http://en.wikipedia.org/wiki/Heat_index
if (!isFahrenheit) {
// Celsius heat index calculation.
return -8.784695 +
1.61139411 * temperature +
2.338549 * percentHumidity +
-0.14611605 * temperature*percentHumidity +
-0.01230809 * pow(temperature, 2) +
-0.01642482 * pow(percentHumidity, 2) +
0.00221173 * pow(temperature, 2) * percentHumidity +
0.00072546 * temperature*pow(percentHumidity, 2) +
-0.00000358 * pow(temperature, 2) * pow(percentHumidity, 2);
}
else {
// Fahrenheit heat index calculation.
return -42.379 +
2.04901523 * temperature +
10.14333127 * percentHumidity +
-0.22475541 * temperature*percentHumidity +
-0.00683783 * pow(temperature, 2) +
-0.05481717 * pow(percentHumidity, 2) +
0.00122874 * pow(temperature, 2) * percentHumidity +
0.00085282 * temperature*pow(percentHumidity, 2) +
-0.00000199 * pow(temperature, 2) * pow(percentHumidity, 2);
}
}
boolean DHT::read(void) {
// Check if sensor was read less than two seconds ago and return early
// to use last reading.
uint32_t currenttime = millis();
if (currenttime < _lastreadtime) {
// ie there was a rollover
_lastreadtime = 0;
}
if (!_firstreading && ((currenttime - _lastreadtime) < 2000)) {
return _lastresult; // return last correct measurement
}
_firstreading = false;
_lastreadtime = millis();
// Reset 40 bits of received data to zero.
data[0] = data[1] = data[2] = data[3] = data[4] = 0;
// Send start signal. See DHT datasheet for full signal diagram:
// http://www.adafruit.com/datasheets/Digital%20humidity%20and%20temperature%20sensor%20AM2302.pdf
// Go into high impedence state to let pull-up raise data line level and
// start the reading process.
digitalWrite(_pin, HIGH);
delay(250);
// First set data line low for 20 milliseconds.
pinMode(_pin, OUTPUT);
digitalWrite(_pin, LOW);
delay(20);
// Turn off interrupts temporarily because the next sections are timing critical
// and we don't want any interruptions.
{
InterruptLock lock;
// End the start signal by setting data line high for 40 microseconds.
digitalWrite(_pin, HIGH);
delayMicroseconds(40);
// Now start reading the data line to get the value from the DHT sensor.
pinMode(_pin, INPUT);
delayMicroseconds(10); // Delay a bit to let sensor pull data line low.
// First expect a low signal for ~80 microseconds followed by a high signal
// for ~80 microseconds again.
if (expectPulse(LOW) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal low pulse."));
_lastresult = false;
return _lastresult;
}
if (expectPulse(HIGH) == 0) {
DEBUG_PRINTLN(F("Timeout waiting for start signal high pulse."));
_lastresult = false;
return _lastresult;
}
// Now read the 40 bits sent by the sensor. Each bit is sent as a 50
// microsecond low pulse followed by a variable length high pulse. If the
// high pulse is ~28 microseconds then it's a 0 and if it's ~70 microseconds
// then it's a 1. We measure the cycle count of the initial 50us low pulse
// and use that to compare to the cycle count of the high pulse to determine
// if the bit is a 0 (high state cycle count < low state cycle count), or a
// 1 (high state cycle count > low state cycle count).
for (int i=0; i<40; ++i) {
uint32_t lowCycles = expectPulse(LOW);
if (lowCycles == 0) {
DEBUG_PRINTLN(F("Timeout waiting for bit low pulse."));
_lastresult = false;
return _lastresult;
}
uint32_t highCycles = expectPulse(HIGH);
if (highCycles == 0) {
DEBUG_PRINTLN(F("Timeout waiting for bit high pulse."));
_lastresult = false;
return _lastresult;
}
data[i/8] <<= 1;
// Now compare the low and high cycle times to see if the bit is a 0 or 1.
if (highCycles > lowCycles) {
// High cycles are greater than 50us low cycle count, must be a 1.
data[i/8] |= 1;
}
// Else high cycles are less than (or equal to, a weird case) the 50us low
// cycle count so this must be a zero. Nothing needs to be changed in the
// stored data.
}
// Timing critical code is now complete.
}
DEBUG_PRINTLN(F("Received:"));
DEBUG_PRINT(data[0], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[1], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[2], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[3], HEX); DEBUG_PRINT(F(", "));
DEBUG_PRINT(data[4], HEX); DEBUG_PRINT(F(" =? "));
DEBUG_PRINTLN(data[0] + data[1] + data[2] + data[3], HEX);
// Check we read 40 bits and that the checksum matches.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
_lastresult = true;
return _lastresult;
}
else {
DEBUG_PRINTLN(F("Checksum failure!"));
_lastresult = false;
return _lastresult;
}
}
// Expect the signal line to be at the specified level for a period of time and
// return a count of loop cycles spent at that level (this cycle count can be
// used to compare the relative time of two pulses). If more than a millisecond
// ellapses without the level changing then the call fails with a 0 response.
uint32_t DHT::expectPulse(bool level) {
uint32_t count = 0;
uint32_t end = micros() + 1000;
// Loop while counting cycles until the level changes.
while (digitalRead(_pin) == level) {
count++;
if (micros() >= end) {
// Exceeded timeout waiting for level to change, fail.
return 0;
}
}
return count;
}