1
0
mirror of https://github.com/schollz/cowyo.git synced 2023-08-10 21:13:00 +03:00
cowyo/vendor/github.com/ugorji/go/codec/helper.go
2018-04-22 05:51:19 -06:00

2415 lines
64 KiB
Go

// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
// Contains code shared by both encode and decode.
// Some shared ideas around encoding/decoding
// ------------------------------------------
//
// If an interface{} is passed, we first do a type assertion to see if it is
// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
//
// If we start with a reflect.Value, we are already in reflect.Value land and
// will try to grab the function for the underlying Type and directly call that function.
// This is more performant than calling reflect.Value.Interface().
//
// This still helps us bypass many layers of reflection, and give best performance.
//
// Containers
// ------------
// Containers in the stream are either associative arrays (key-value pairs) or
// regular arrays (indexed by incrementing integers).
//
// Some streams support indefinite-length containers, and use a breaking
// byte-sequence to denote that the container has come to an end.
//
// Some streams also are text-based, and use explicit separators to denote the
// end/beginning of different values.
//
// During encode, we use a high-level condition to determine how to iterate through
// the container. That decision is based on whether the container is text-based (with
// separators) or binary (without separators). If binary, we do not even call the
// encoding of separators.
//
// During decode, we use a different high-level condition to determine how to iterate
// through the containers. That decision is based on whether the stream contained
// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
// it has to be binary, and we do not even try to read separators.
//
// Philosophy
// ------------
// On decode, this codec will update containers appropriately:
// - If struct, update fields from stream into fields of struct.
// If field in stream not found in struct, handle appropriately (based on option).
// If a struct field has no corresponding value in the stream, leave it AS IS.
// If nil in stream, set value to nil/zero value.
// - If map, update map from stream.
// If the stream value is NIL, set the map to nil.
// - if slice, try to update up to length of array in stream.
// if container len is less than stream array length,
// and container cannot be expanded, handled (based on option).
// This means you can decode 4-element stream array into 1-element array.
//
// ------------------------------------
// On encode, user can specify omitEmpty. This means that the value will be omitted
// if the zero value. The problem may occur during decode, where omitted values do not affect
// the value being decoded into. This means that if decoding into a struct with an
// int field with current value=5, and the field is omitted in the stream, then after
// decoding, the value will still be 5 (not 0).
// omitEmpty only works if you guarantee that you always decode into zero-values.
//
// ------------------------------------
// We could have truncated a map to remove keys not available in the stream,
// or set values in the struct which are not in the stream to their zero values.
// We decided against it because there is no efficient way to do it.
// We may introduce it as an option later.
// However, that will require enabling it for both runtime and code generation modes.
//
// To support truncate, we need to do 2 passes over the container:
// map
// - first collect all keys (e.g. in k1)
// - for each key in stream, mark k1 that the key should not be removed
// - after updating map, do second pass and call delete for all keys in k1 which are not marked
// struct:
// - for each field, track the *typeInfo s1
// - iterate through all s1, and for each one not marked, set value to zero
// - this involves checking the possible anonymous fields which are nil ptrs.
// too much work.
//
// ------------------------------------------
// Error Handling is done within the library using panic.
//
// This way, the code doesn't have to keep checking if an error has happened,
// and we don't have to keep sending the error value along with each call
// or storing it in the En|Decoder and checking it constantly along the way.
//
// The disadvantage is that small functions which use panics cannot be inlined.
// The code accounts for that by only using panics behind an interface;
// since interface calls cannot be inlined, this is irrelevant.
//
// We considered storing the error is En|Decoder.
// - once it has its err field set, it cannot be used again.
// - panicing will be optional, controlled by const flag.
// - code should always check error first and return early.
// We eventually decided against it as it makes the code clumsier to always
// check for these error conditions.
import (
"bytes"
"encoding"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"reflect"
"sort"
"strconv"
"strings"
"sync"
"time"
)
const (
scratchByteArrayLen = 32
// initCollectionCap = 16 // 32 is defensive. 16 is preferred.
// Support encoding.(Binary|Text)(Unm|M)arshaler.
// This constant flag will enable or disable it.
supportMarshalInterfaces = true
// for debugging, set this to false, to catch panic traces.
// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
recoverPanicToErr = true
// arrayCacheLen is the length of the cache used in encoder or decoder for
// allowing zero-alloc initialization.
arrayCacheLen = 8
// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
cacheLineSize = 64
wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
wordSize = wordSizeBits / 8
maxLevelsEmbedding = 15 // use this, so structFieldInfo fits into 8 bytes
)
var (
oneByteArr = [1]byte{0}
zeroByteSlice = oneByteArr[:0:0]
)
var refBitset bitset32
var pool pooler
var panicv panicHdl
func init() {
pool.init()
refBitset.set(byte(reflect.Map))
refBitset.set(byte(reflect.Ptr))
refBitset.set(byte(reflect.Func))
refBitset.set(byte(reflect.Chan))
}
type charEncoding uint8
const (
cRAW charEncoding = iota
cUTF8
cUTF16LE
cUTF16BE
cUTF32LE
cUTF32BE
)
// valueType is the stream type
type valueType uint8
const (
valueTypeUnset valueType = iota
valueTypeNil
valueTypeInt
valueTypeUint
valueTypeFloat
valueTypeBool
valueTypeString
valueTypeSymbol
valueTypeBytes
valueTypeMap
valueTypeArray
valueTypeTime
valueTypeExt
// valueTypeInvalid = 0xff
)
var valueTypeStrings = [...]string{
"Unset",
"Nil",
"Int",
"Uint",
"Float",
"Bool",
"String",
"Symbol",
"Bytes",
"Map",
"Array",
"Timestamp",
"Ext",
}
func (x valueType) String() string {
if int(x) < len(valueTypeStrings) {
return valueTypeStrings[x]
}
return strconv.FormatInt(int64(x), 10)
}
type seqType uint8
const (
_ seqType = iota
seqTypeArray
seqTypeSlice
seqTypeChan
)
// note that containerMapStart and containerArraySend are not sent.
// This is because the ReadXXXStart and EncodeXXXStart already does these.
type containerState uint8
const (
_ containerState = iota
containerMapStart // slot left open, since Driver method already covers it
containerMapKey
containerMapValue
containerMapEnd
containerArrayStart // slot left open, since Driver methods already cover it
containerArrayElem
containerArrayEnd
)
// // sfiIdx used for tracking where a (field/enc)Name is seen in a []*structFieldInfo
// type sfiIdx struct {
// name string
// index int
// }
// do not recurse if a containing type refers to an embedded type
// which refers back to its containing type (via a pointer).
// The second time this back-reference happens, break out,
// so as not to cause an infinite loop.
const rgetMaxRecursion = 2
// Anecdotally, we believe most types have <= 12 fields.
// - even Java's PMD rules set TooManyFields threshold to 15.
// However, go has embedded fields, which should be regarded as
// top level, allowing structs to possibly double or triple.
// In addition, we don't want to keep creating transient arrays,
// especially for the sfi index tracking, and the evtypes tracking.
//
// So - try to keep typeInfoLoadArray within 2K bytes
const (
typeInfoLoadArraySfisLen = 16
typeInfoLoadArraySfiidxLen = 8 * 112
typeInfoLoadArrayEtypesLen = 12
typeInfoLoadArrayBLen = 8 * 4
)
type typeInfoLoad struct {
// fNames []string
// encNames []string
etypes []uintptr
sfis []structFieldInfo
}
type typeInfoLoadArray struct {
// fNames [typeInfoLoadArrayLen]string
// encNames [typeInfoLoadArrayLen]string
sfis [typeInfoLoadArraySfisLen]structFieldInfo
sfiidx [typeInfoLoadArraySfiidxLen]byte
etypes [typeInfoLoadArrayEtypesLen]uintptr
b [typeInfoLoadArrayBLen]byte // scratch - used for struct field names
}
// mirror json.Marshaler and json.Unmarshaler here,
// so we don't import the encoding/json package
type jsonMarshaler interface {
MarshalJSON() ([]byte, error)
}
type jsonUnmarshaler interface {
UnmarshalJSON([]byte) error
}
type isZeroer interface {
IsZero() bool
}
// type byteAccepter func(byte) bool
var (
bigen = binary.BigEndian
structInfoFieldName = "_struct"
mapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
intfSliceTyp = reflect.TypeOf([]interface{}(nil))
intfTyp = intfSliceTyp.Elem()
reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
stringTyp = reflect.TypeOf("")
timeTyp = reflect.TypeOf(time.Time{})
rawExtTyp = reflect.TypeOf(RawExt{})
rawTyp = reflect.TypeOf(Raw{})
uintptrTyp = reflect.TypeOf(uintptr(0))
uint8Typ = reflect.TypeOf(uint8(0))
uint8SliceTyp = reflect.TypeOf([]uint8(nil))
uintTyp = reflect.TypeOf(uint(0))
intTyp = reflect.TypeOf(int(0))
mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
binaryMarshalerTyp = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
textMarshalerTyp = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
jsonMarshalerTyp = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
selferTyp = reflect.TypeOf((*Selfer)(nil)).Elem()
iszeroTyp = reflect.TypeOf((*isZeroer)(nil)).Elem()
uint8TypId = rt2id(uint8Typ)
uint8SliceTypId = rt2id(uint8SliceTyp)
rawExtTypId = rt2id(rawExtTyp)
rawTypId = rt2id(rawTyp)
intfTypId = rt2id(intfTyp)
timeTypId = rt2id(timeTyp)
stringTypId = rt2id(stringTyp)
mapStrIntfTypId = rt2id(mapStrIntfTyp)
mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
intfSliceTypId = rt2id(intfSliceTyp)
// mapBySliceTypId = rt2id(mapBySliceTyp)
intBitsize = uint8(intTyp.Bits())
uintBitsize = uint8(uintTyp.Bits())
bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
chkOvf checkOverflow
errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo")
)
var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
var immutableKindsSet = [32]bool{
// reflect.Invalid: ,
reflect.Bool: true,
reflect.Int: true,
reflect.Int8: true,
reflect.Int16: true,
reflect.Int32: true,
reflect.Int64: true,
reflect.Uint: true,
reflect.Uint8: true,
reflect.Uint16: true,
reflect.Uint32: true,
reflect.Uint64: true,
reflect.Uintptr: true,
reflect.Float32: true,
reflect.Float64: true,
reflect.Complex64: true,
reflect.Complex128: true,
// reflect.Array
// reflect.Chan
// reflect.Func: true,
// reflect.Interface
// reflect.Map
// reflect.Ptr
// reflect.Slice
reflect.String: true,
// reflect.Struct
// reflect.UnsafePointer
}
// Selfer defines methods by which a value can encode or decode itself.
//
// Any type which implements Selfer will be able to encode or decode itself.
// Consequently, during (en|de)code, this takes precedence over
// (text|binary)(M|Unm)arshal or extension support.
//
// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
// This is because, during each decode, we first check the the next set of bytes
// represent nil, and if so, we just set the value to nil.
type Selfer interface {
CodecEncodeSelf(*Encoder)
CodecDecodeSelf(*Decoder)
}
// MapBySlice is a tag interface that denotes wrapped slice should encode as a map in the stream.
// The slice contains a sequence of key-value pairs.
// This affords storing a map in a specific sequence in the stream.
//
// Example usage:
// type T1 []string // or []int or []Point or any other "slice" type
// func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
// type T2 struct { KeyValues T1 }
//
// var kvs = []string{"one", "1", "two", "2", "three", "3"}
// var v2 = T2{ KeyValues: T1(kvs) }
// // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
//
// The support of MapBySlice affords the following:
// - A slice type which implements MapBySlice will be encoded as a map
// - A slice can be decoded from a map in the stream
// - It MUST be a slice type (not a pointer receiver) that implements MapBySlice
type MapBySlice interface {
MapBySlice()
}
// BasicHandle encapsulates the common options and extension functions.
//
// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
type BasicHandle struct {
// BasicHandle is always a part of a different type.
// It doesn't have to fit into it own cache lines.
// TypeInfos is used to get the type info for any type.
//
// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
TypeInfos *TypeInfos
// Note: BasicHandle is not comparable, due to these slices here (extHandle, intf2impls).
// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
// Thses slices are used all the time, so keep as slices (not pointers).
extHandle
intf2impls
RPCOptions
// ---- cache line
DecodeOptions
// ---- cache line
EncodeOptions
// noBuiltInTypeChecker
}
func (x *BasicHandle) getBasicHandle() *BasicHandle {
return x
}
func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
if x.TypeInfos == nil {
return defTypeInfos.get(rtid, rt)
}
return x.TypeInfos.get(rtid, rt)
}
// Handle is the interface for a specific encoding format.
//
// Typically, a Handle is pre-configured before first time use,
// and not modified while in use. Such a pre-configured Handle
// is safe for concurrent access.
type Handle interface {
Name() string
getBasicHandle() *BasicHandle
recreateEncDriver(encDriver) bool
newEncDriver(w *Encoder) encDriver
newDecDriver(r *Decoder) decDriver
isBinary() bool
hasElemSeparators() bool
// IsBuiltinType(rtid uintptr) bool
}
// Raw represents raw formatted bytes.
// We "blindly" store it during encode and retrieve the raw bytes during decode.
// Note: it is dangerous during encode, so we may gate the behaviour
// behind an Encode flag which must be explicitly set.
type Raw []byte
// RawExt represents raw unprocessed extension data.
// Some codecs will decode extension data as a *RawExt
// if there is no registered extension for the tag.
//
// Only one of Data or Value is nil.
// If Data is nil, then the content of the RawExt is in the Value.
type RawExt struct {
Tag uint64
// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
Data []byte
// Value represents the extension, if Data is nil.
// Value is used by codecs (e.g. cbor, json) which leverage the format to do
// custom serialization of the types.
Value interface{}
}
// BytesExt handles custom (de)serialization of types to/from []byte.
// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
type BytesExt interface {
// WriteExt converts a value to a []byte.
//
// Note: v is a pointer iff the registered extension type is a struct or array kind.
WriteExt(v interface{}) []byte
// ReadExt updates a value from a []byte.
//
// Note: dst is always a pointer kind to the registered extension type.
ReadExt(dst interface{}, src []byte)
}
// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
// The Encoder or Decoder will then handle the further (de)serialization of that known type.
//
// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
type InterfaceExt interface {
// ConvertExt converts a value into a simpler interface for easy encoding
// e.g. convert time.Time to int64.
//
// Note: v is a pointer iff the registered extension type is a struct or array kind.
ConvertExt(v interface{}) interface{}
// UpdateExt updates a value from a simpler interface for easy decoding
// e.g. convert int64 to time.Time.
//
// Note: dst is always a pointer kind to the registered extension type.
UpdateExt(dst interface{}, src interface{})
}
// Ext handles custom (de)serialization of custom types / extensions.
type Ext interface {
BytesExt
InterfaceExt
}
// addExtWrapper is a wrapper implementation to support former AddExt exported method.
type addExtWrapper struct {
encFn func(reflect.Value) ([]byte, error)
decFn func(reflect.Value, []byte) error
}
func (x addExtWrapper) WriteExt(v interface{}) []byte {
bs, err := x.encFn(reflect.ValueOf(v))
if err != nil {
panic(err)
}
return bs
}
func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
panic(err)
}
}
func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
return x.WriteExt(v)
}
func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
x.ReadExt(dest, v.([]byte))
}
type extWrapper struct {
BytesExt
InterfaceExt
}
type bytesExtFailer struct{}
func (bytesExtFailer) WriteExt(v interface{}) []byte {
panicv.errorstr("BytesExt.WriteExt is not supported")
return nil
}
func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
panicv.errorstr("BytesExt.ReadExt is not supported")
}
type interfaceExtFailer struct{}
func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
panicv.errorstr("InterfaceExt.ConvertExt is not supported")
return nil
}
func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
panicv.errorstr("InterfaceExt.UpdateExt is not supported")
}
type binaryEncodingType struct{}
func (binaryEncodingType) isBinary() bool { return true }
type textEncodingType struct{}
func (textEncodingType) isBinary() bool { return false }
// noBuiltInTypes is embedded into many types which do not support builtins
// e.g. msgpack, simple, cbor.
// type noBuiltInTypeChecker struct{}
// func (noBuiltInTypeChecker) IsBuiltinType(rt uintptr) bool { return false }
// type noBuiltInTypes struct{ noBuiltInTypeChecker }
type noBuiltInTypes struct{}
func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
// type noStreamingCodec struct{}
// func (noStreamingCodec) CheckBreak() bool { return false }
// func (noStreamingCodec) hasElemSeparators() bool { return false }
type noElemSeparators struct{}
func (noElemSeparators) hasElemSeparators() (v bool) { return }
func (noElemSeparators) recreateEncDriver(e encDriver) (v bool) { return }
// bigenHelper.
// Users must already slice the x completely, because we will not reslice.
type bigenHelper struct {
x []byte // must be correctly sliced to appropriate len. slicing is a cost.
w encWriter
}
func (z bigenHelper) writeUint16(v uint16) {
bigen.PutUint16(z.x, v)
z.w.writeb(z.x)
}
func (z bigenHelper) writeUint32(v uint32) {
bigen.PutUint32(z.x, v)
z.w.writeb(z.x)
}
func (z bigenHelper) writeUint64(v uint64) {
bigen.PutUint64(z.x, v)
z.w.writeb(z.x)
}
type extTypeTagFn struct {
rtid uintptr
rtidptr uintptr
rt reflect.Type
tag uint64
ext Ext
_ [1]uint64 // padding
}
type extHandle []extTypeTagFn
// AddExt registes an encode and decode function for a reflect.Type.
// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) AddExt(rt reflect.Type, tag byte,
encfn func(reflect.Value) ([]byte, error),
decfn func(reflect.Value, []byte) error) (err error) {
if encfn == nil || decfn == nil {
return o.SetExt(rt, uint64(tag), nil)
}
return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
}
// SetExt will set the extension for a tag and reflect.Type.
// Note that the type must be a named type, and specifically not a pointer or Interface.
// An error is returned if that is not honored.
// To Deregister an ext, call SetExt with nil Ext.
//
// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
// o is a pointer, because we may need to initialize it
rk := rt.Kind()
for rk == reflect.Ptr {
rt = rt.Elem()
rk = rt.Kind()
}
if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
}
rtid := rt2id(rt)
switch rtid {
case timeTypId, rawTypId, rawExtTypId:
// all natively supported type, so cannot have an extension
return // TODO: should we silently ignore, or return an error???
}
// if o == nil {
// return errors.New("codec.Handle.SetExt: extHandle not initialized")
// }
o2 := *o
// if o2 == nil {
// return errors.New("codec.Handle.SetExt: extHandle not initialized")
// }
for i := range o2 {
v := &o2[i]
if v.rtid == rtid {
v.tag, v.ext = tag, ext
return
}
}
rtidptr := rt2id(reflect.PtrTo(rt))
*o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext, [1]uint64{}})
return
}
func (o extHandle) getExt(rtid uintptr) (v *extTypeTagFn) {
for i := range o {
v = &o[i]
if v.rtid == rtid || v.rtidptr == rtid {
return
}
}
return nil
}
func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
for i := range o {
v = &o[i]
if v.tag == tag {
return
}
}
return nil
}
type intf2impl struct {
rtid uintptr // for intf
impl reflect.Type
// _ [1]uint64 // padding // not-needed, as *intf2impl is never returned.
}
type intf2impls []intf2impl
// Intf2Impl maps an interface to an implementing type.
// This allows us support infering the concrete type
// and populating it when passed an interface.
// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
//
// Passing a nil impl will clear the mapping.
func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
if impl != nil && !impl.Implements(intf) {
return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
}
rtid := rt2id(intf)
o2 := *o
for i := range o2 {
v := &o2[i]
if v.rtid == rtid {
v.impl = impl
return
}
}
*o = append(o2, intf2impl{rtid, impl})
return
}
func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
for i := range o {
v := &o[i]
if v.rtid == rtid {
if v.impl == nil {
return
}
if v.impl.Kind() == reflect.Ptr {
return reflect.New(v.impl.Elem())
}
return reflect.New(v.impl).Elem()
}
}
return
}
type structFieldInfoFlag uint8
const (
_ structFieldInfoFlag = 1 << iota
structFieldInfoFlagReady
structFieldInfoFlagOmitEmpty
)
func (x *structFieldInfoFlag) flagSet(f structFieldInfoFlag) {
*x = *x | f
}
func (x *structFieldInfoFlag) flagClr(f structFieldInfoFlag) {
*x = *x &^ f
}
func (x structFieldInfoFlag) flagGet(f structFieldInfoFlag) bool {
return x&f != 0
}
func (x structFieldInfoFlag) omitEmpty() bool {
return x.flagGet(structFieldInfoFlagOmitEmpty)
}
func (x structFieldInfoFlag) ready() bool {
return x.flagGet(structFieldInfoFlagReady)
}
type structFieldInfo struct {
encName string // encode name
fieldName string // field name
is [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
nis uint8 // num levels of embedding. if 1, then it's not embedded.
structFieldInfoFlag
}
func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
if v, valid := si.field(v, false); valid {
v.Set(reflect.Zero(v.Type()))
}
}
// rv returns the field of the struct.
// If anonymous, it returns an Invalid
func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
// replicate FieldByIndex
for i, x := range si.is {
if uint8(i) == si.nis {
break
}
if v, valid = baseStructRv(v, update); !valid {
return
}
v = v.Field(int(x))
}
return v, true
}
// func (si *structFieldInfo) fieldval(v reflect.Value, update bool) reflect.Value {
// v, _ = si.field(v, update)
// return v
// }
func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
keytype = valueTypeString // default
if stag == "" {
return
}
for i, s := range strings.Split(stag, ",") {
if i == 0 {
} else {
switch s {
case "omitempty":
omitEmpty = true
case "toarray":
toArray = true
case "int":
keytype = valueTypeInt
case "uint":
keytype = valueTypeUint
case "float":
keytype = valueTypeFloat
// case "bool":
// keytype = valueTypeBool
case "string":
keytype = valueTypeString
}
}
}
return
}
func (si *structFieldInfo) parseTag(stag string) {
// if fname == "" {
// panic(errNoFieldNameToStructFieldInfo)
// }
if stag == "" {
return
}
for i, s := range strings.Split(stag, ",") {
if i == 0 {
if s != "" {
si.encName = s
}
} else {
switch s {
case "omitempty":
si.flagSet(structFieldInfoFlagOmitEmpty)
// si.omitEmpty = true
// case "toarray":
// si.toArray = true
}
}
}
}
type sfiSortedByEncName []*structFieldInfo
func (p sfiSortedByEncName) Len() int {
return len(p)
}
func (p sfiSortedByEncName) Less(i, j int) bool {
return p[i].encName < p[j].encName
}
func (p sfiSortedByEncName) Swap(i, j int) {
p[i], p[j] = p[j], p[i]
}
const structFieldNodeNumToCache = 4
type structFieldNodeCache struct {
rv [structFieldNodeNumToCache]reflect.Value
idx [structFieldNodeNumToCache]uint32
num uint8
}
func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
for i, k := range &x.idx {
if uint8(i) == x.num {
return // break
}
if key == k {
return x.rv[i], true
}
}
return
}
func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
if x.num < structFieldNodeNumToCache {
x.rv[x.num] = fv
x.idx[x.num] = key
x.num++
return
}
}
type structFieldNode struct {
v reflect.Value
cache2 structFieldNodeCache
cache3 structFieldNodeCache
update bool
}
func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
// return si.fieldval(x.v, x.update)
// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
var valid bool
switch si.nis {
case 1:
fv = x.v.Field(int(si.is[0]))
case 2:
if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
fv = fv.Field(int(si.is[1]))
return
}
fv = x.v.Field(int(si.is[0]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
x.cache2.tryAdd(fv, uint32(si.is[0]))
fv = fv.Field(int(si.is[1]))
case 3:
var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
if fv, valid = x.cache3.get(key); valid {
fv = fv.Field(int(si.is[2]))
return
}
fv = x.v.Field(int(si.is[0]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
fv = fv.Field(int(si.is[1]))
if fv, valid = baseStructRv(fv, x.update); !valid {
return
}
x.cache3.tryAdd(fv, key)
fv = fv.Field(int(si.is[2]))
default:
fv, _ = si.field(x.v, x.update)
}
return
}
func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
for v.Kind() == reflect.Ptr {
if v.IsNil() {
if !update {
return
}
v.Set(reflect.New(v.Type().Elem()))
}
v = v.Elem()
}
return v, true
}
type typeInfoFlag uint8
const (
typeInfoFlagComparable = 1 << iota
typeInfoFlagIsZeroer
typeInfoFlagIsZeroerPtr
)
// typeInfo keeps information about each (non-ptr) type referenced in the encode/decode sequence.
//
// During an encode/decode sequence, we work as below:
// - If base is a built in type, en/decode base value
// - If base is registered as an extension, en/decode base value
// - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
// - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
// - Else decode appropriately based on the reflect.Kind
type typeInfo struct {
rt reflect.Type
elem reflect.Type
pkgpath string
rtid uintptr
// rv0 reflect.Value // saved zero value, used if immutableKind
numMeth uint16 // number of methods
kind uint8
chandir uint8
anyOmitEmpty bool // true if a struct, and any of the fields are tagged "omitempty"
toArray bool // whether this (struct) type should be encoded as an array
keyType valueType // if struct, how is the field name stored in a stream? default is string
mbs bool // base type (T or *T) is a MapBySlice
// ---- cpu cache line boundary?
sfiSort []*structFieldInfo // sorted. Used when enc/dec struct to map.
sfiSrc []*structFieldInfo // unsorted. Used when enc/dec struct to array.
key reflect.Type
// ---- cpu cache line boundary?
// sfis []structFieldInfo // all sfi, in src order, as created.
sfiNamesSort []byte // all names, with indexes into the sfiSort
// format of marshal type fields below: [btj][mu]p? OR csp?
bm bool // T is a binaryMarshaler
bmp bool // *T is a binaryMarshaler
bu bool // T is a binaryUnmarshaler
bup bool // *T is a binaryUnmarshaler
tm bool // T is a textMarshaler
tmp bool // *T is a textMarshaler
tu bool // T is a textUnmarshaler
tup bool // *T is a textUnmarshaler
jm bool // T is a jsonMarshaler
jmp bool // *T is a jsonMarshaler
ju bool // T is a jsonUnmarshaler
jup bool // *T is a jsonUnmarshaler
cs bool // T is a Selfer
csp bool // *T is a Selfer
// other flags, with individual bits representing if set.
flags typeInfoFlag
// _ [2]byte // padding
_ [3]uint64 // padding
}
func (ti *typeInfo) isFlag(f typeInfoFlag) bool {
return ti.flags&f != 0
}
func (ti *typeInfo) indexForEncName(name []byte) (index int16) {
var sn []byte
if len(name)+2 <= 32 {
var buf [32]byte // should not escape
sn = buf[:len(name)+2]
} else {
sn = make([]byte, len(name)+2)
}
copy(sn[1:], name)
sn[0], sn[len(sn)-1] = tiSep2(name), 0xff
j := bytes.Index(ti.sfiNamesSort, sn)
if j < 0 {
return -1
}
index = int16(uint16(ti.sfiNamesSort[j+len(sn)+1]) | uint16(ti.sfiNamesSort[j+len(sn)])<<8)
return
}
type rtid2ti struct {
rtid uintptr
ti *typeInfo
}
// TypeInfos caches typeInfo for each type on first inspection.
//
// It is configured with a set of tag keys, which are used to get
// configuration for the type.
type TypeInfos struct {
// infos: formerly map[uintptr]*typeInfo, now *[]rtid2ti, 2 words expected
infos atomicTypeInfoSlice
mu sync.Mutex
tags []string
_ [2]uint64 // padding
}
// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
//
// This allows users customize the struct tag keys which contain configuration
// of their types.
func NewTypeInfos(tags []string) *TypeInfos {
return &TypeInfos{tags: tags}
}
func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
// check for tags: codec, json, in that order.
// this allows seamless support for many configured structs.
for _, x := range x.tags {
s = t.Get(x)
if s != "" {
return s
}
}
return
}
func (x *TypeInfos) find(s []rtid2ti, rtid uintptr) (idx int, ti *typeInfo) {
// binary search. adapted from sort/search.go.
// if sp == nil {
// return -1, nil
// }
// s := *sp
h, i, j := 0, 0, len(s)
for i < j {
h = i + (j-i)/2
if s[h].rtid < rtid {
i = h + 1
} else {
j = h
}
}
if i < len(s) && s[i].rtid == rtid {
return i, s[i].ti
}
return i, nil
}
func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
sp := x.infos.load()
var idx int
if sp != nil {
idx, pti = x.find(sp, rtid)
if pti != nil {
return
}
}
rk := rt.Kind()
if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
panicv.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
}
// do not hold lock while computing this.
// it may lead to duplication, but that's ok.
ti := typeInfo{rt: rt, rtid: rtid, kind: uint8(rk), pkgpath: rt.PkgPath()}
// ti.rv0 = reflect.Zero(rt)
// ti.comparable = rt.Comparable()
ti.numMeth = uint16(rt.NumMethod())
ti.bm, ti.bmp = implIntf(rt, binaryMarshalerTyp)
ti.bu, ti.bup = implIntf(rt, binaryUnmarshalerTyp)
ti.tm, ti.tmp = implIntf(rt, textMarshalerTyp)
ti.tu, ti.tup = implIntf(rt, textUnmarshalerTyp)
ti.jm, ti.jmp = implIntf(rt, jsonMarshalerTyp)
ti.ju, ti.jup = implIntf(rt, jsonUnmarshalerTyp)
ti.cs, ti.csp = implIntf(rt, selferTyp)
b1, b2 := implIntf(rt, iszeroTyp)
if b1 {
ti.flags |= typeInfoFlagIsZeroer
}
if b2 {
ti.flags |= typeInfoFlagIsZeroerPtr
}
if rt.Comparable() {
ti.flags |= typeInfoFlagComparable
}
switch rk {
case reflect.Struct:
var omitEmpty bool
if f, ok := rt.FieldByName(structInfoFieldName); ok {
ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
} else {
ti.keyType = valueTypeString
}
pp, pi := pool.tiLoad()
pv := pi.(*typeInfoLoadArray)
pv.etypes[0] = ti.rtid
// vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
vv := typeInfoLoad{pv.etypes[:1], pv.sfis[:0]}
x.rget(rt, rtid, omitEmpty, nil, &vv)
// ti.sfis = vv.sfis
ti.sfiSrc, ti.sfiSort, ti.sfiNamesSort, ti.anyOmitEmpty = rgetResolveSFI(rt, vv.sfis, pv)
pp.Put(pi)
case reflect.Map:
ti.elem = rt.Elem()
ti.key = rt.Key()
case reflect.Slice:
ti.mbs, _ = implIntf(rt, mapBySliceTyp)
ti.elem = rt.Elem()
case reflect.Chan:
ti.elem = rt.Elem()
ti.chandir = uint8(rt.ChanDir())
case reflect.Array, reflect.Ptr:
ti.elem = rt.Elem()
}
// sfi = sfiSrc
x.mu.Lock()
sp = x.infos.load()
if sp == nil {
pti = &ti
vs := []rtid2ti{{rtid, pti}}
x.infos.store(vs)
} else {
idx, pti = x.find(sp, rtid)
if pti == nil {
pti = &ti
vs := make([]rtid2ti, len(sp)+1)
copy(vs, sp[:idx])
copy(vs[idx+1:], sp[idx:])
vs[idx] = rtid2ti{rtid, pti}
x.infos.store(vs)
}
}
x.mu.Unlock()
return
}
func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
indexstack []uint16, pv *typeInfoLoad) {
// Read up fields and store how to access the value.
//
// It uses go's rules for message selectors,
// which say that the field with the shallowest depth is selected.
//
// Note: we consciously use slices, not a map, to simulate a set.
// Typically, types have < 16 fields,
// and iteration using equals is faster than maps there
flen := rt.NumField()
if flen > (1<<maxLevelsEmbedding - 1) {
panicv.errorf("codec: types with > %v fields are not supported - has %v fields",
(1<<maxLevelsEmbedding - 1), flen)
}
// pv.sfis = make([]structFieldInfo, flen)
LOOP:
for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
f := rt.Field(int(j))
fkind := f.Type.Kind()
// skip if a func type, or is unexported, or structTag value == "-"
switch fkind {
case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
continue LOOP
}
isUnexported := f.PkgPath != ""
if isUnexported && !f.Anonymous {
continue
}
stag := x.structTag(f.Tag)
if stag == "-" {
continue
}
var si structFieldInfo
var parsed bool
// if anonymous and no struct tag (or it's blank),
// and a struct (or pointer to struct), inline it.
if f.Anonymous && fkind != reflect.Interface {
// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
ft := f.Type
isPtr := ft.Kind() == reflect.Ptr
for ft.Kind() == reflect.Ptr {
ft = ft.Elem()
}
isStruct := ft.Kind() == reflect.Struct
// Ignore embedded fields of unexported non-struct types.
// Also, from go1.10, ignore pointers to unexported struct types
// because unmarshal cannot assign a new struct to an unexported field.
// See https://golang.org/issue/21357
if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
continue
}
doInline := stag == ""
if !doInline {
si.parseTag(stag)
parsed = true
doInline = si.encName == ""
// doInline = si.isZero()
}
if doInline && isStruct {
// if etypes contains this, don't call rget again (as fields are already seen here)
ftid := rt2id(ft)
// We cannot recurse forever, but we need to track other field depths.
// So - we break if we see a type twice (not the first time).
// This should be sufficient to handle an embedded type that refers to its
// owning type, which then refers to its embedded type.
processIt := true
numk := 0
for _, k := range pv.etypes {
if k == ftid {
numk++
if numk == rgetMaxRecursion {
processIt = false
break
}
}
}
if processIt {
pv.etypes = append(pv.etypes, ftid)
indexstack2 := make([]uint16, len(indexstack)+1)
copy(indexstack2, indexstack)
indexstack2[len(indexstack)] = j
// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
x.rget(ft, ftid, omitEmpty, indexstack2, pv)
}
continue
}
}
// after the anonymous dance: if an unexported field, skip
if isUnexported {
continue
}
if f.Name == "" {
panic(errNoFieldNameToStructFieldInfo)
}
// pv.fNames = append(pv.fNames, f.Name)
// if si.encName == "" {
if !parsed {
si.encName = f.Name
si.parseTag(stag)
parsed = true
} else if si.encName == "" {
si.encName = f.Name
}
si.fieldName = f.Name
si.flagSet(structFieldInfoFlagReady)
// pv.encNames = append(pv.encNames, si.encName)
// si.ikind = int(f.Type.Kind())
if len(indexstack) > maxLevelsEmbedding-1 {
panicv.errorf("codec: only supports up to %v depth of embedding - type has %v depth",
maxLevelsEmbedding-1, len(indexstack))
}
si.nis = uint8(len(indexstack)) + 1
copy(si.is[:], indexstack)
si.is[len(indexstack)] = j
if omitEmpty {
si.flagSet(structFieldInfoFlagOmitEmpty)
}
pv.sfis = append(pv.sfis, si)
}
}
func tiSep(name string) uint8 {
// (xn[0]%64) // (between 192-255 - outside ascii BMP)
// return 0xfe - (name[0] & 63)
// return 0xfe - (name[0] & 63) - uint8(len(name))
// return 0xfe - (name[0] & 63) - uint8(len(name)&63)
// return ((0xfe - (name[0] & 63)) & 0xf8) | (uint8(len(name) & 0x07))
return 0xfe - (name[0] & 63) - uint8(len(name)&63)
}
func tiSep2(name []byte) uint8 {
return 0xfe - (name[0] & 63) - uint8(len(name)&63)
}
// resolves the struct field info got from a call to rget.
// Returns a trimmed, unsorted and sorted []*structFieldInfo.
func rgetResolveSFI(rt reflect.Type, x []structFieldInfo, pv *typeInfoLoadArray) (
y, z []*structFieldInfo, ss []byte, anyOmitEmpty bool) {
sa := pv.sfiidx[:0]
sn := pv.b[:]
n := len(x)
var xn string
var ui uint16
var sep byte
for i := range x {
ui = uint16(i)
xn = x[i].encName // fieldName or encName? use encName for now.
if len(xn)+2 > cap(pv.b) {
sn = make([]byte, len(xn)+2)
} else {
sn = sn[:len(xn)+2]
}
// use a custom sep, so that misses are less frequent,
// since the sep (first char in search) is as unique as first char in field name.
sep = tiSep(xn)
sn[0], sn[len(sn)-1] = sep, 0xff
copy(sn[1:], xn)
j := bytes.Index(sa, sn)
if j == -1 {
sa = append(sa, sep)
sa = append(sa, xn...)
sa = append(sa, 0xff, byte(ui>>8), byte(ui))
} else {
index := uint16(sa[j+len(sn)+1]) | uint16(sa[j+len(sn)])<<8
// one of them must be reset to nil,
// and the index updated appropriately to the other one
if x[i].nis == x[index].nis {
} else if x[i].nis < x[index].nis {
sa[j+len(sn)], sa[j+len(sn)+1] = byte(ui>>8), byte(ui)
if x[index].ready() {
x[index].flagClr(structFieldInfoFlagReady)
n--
}
} else {
if x[i].ready() {
x[i].flagClr(structFieldInfoFlagReady)
n--
}
}
}
}
var w []structFieldInfo
sharingArray := len(x) <= typeInfoLoadArraySfisLen // sharing array with typeInfoLoadArray
if sharingArray {
w = make([]structFieldInfo, n)
}
// remove all the nils (non-ready)
y = make([]*structFieldInfo, n)
n = 0
var sslen int
for i := range x {
if !x[i].ready() {
continue
}
if !anyOmitEmpty && x[i].omitEmpty() {
anyOmitEmpty = true
}
if sharingArray {
w[n] = x[i]
y[n] = &w[n]
} else {
y[n] = &x[i]
}
sslen = sslen + len(x[i].encName) + 4
n++
}
if n != len(y) {
panicv.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d",
rt, len(y), len(x), n)
}
z = make([]*structFieldInfo, len(y))
copy(z, y)
sort.Sort(sfiSortedByEncName(z))
sharingArray = len(sa) <= typeInfoLoadArraySfiidxLen
if sharingArray {
ss = make([]byte, 0, sslen)
} else {
ss = sa[:0] // reuse the newly made sa array if necessary
}
for i := range z {
xn = z[i].encName
sep = tiSep(xn)
ui = uint16(i)
ss = append(ss, sep)
ss = append(ss, xn...)
ss = append(ss, 0xff, byte(ui>>8), byte(ui))
}
return
}
func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
}
// isEmptyStruct is only called from isEmptyValue, and checks if a struct is empty:
// - does it implement IsZero() bool
// - is it comparable, and can i compare directly using ==
// - if checkStruct, then walk through the encodable fields
// and check if they are empty or not.
func isEmptyStruct(v reflect.Value, tinfos *TypeInfos, deref, checkStruct bool) bool {
// v is a struct kind - no need to check again.
// We only check isZero on a struct kind, to reduce the amount of times
// that we lookup the rtid and typeInfo for each type as we walk the tree.
vt := v.Type()
rtid := rt2id(vt)
if tinfos == nil {
tinfos = defTypeInfos
}
ti := tinfos.get(rtid, vt)
if ti.rtid == timeTypId {
return rv2i(v).(time.Time).IsZero()
}
if ti.isFlag(typeInfoFlagIsZeroerPtr) && v.CanAddr() {
return rv2i(v.Addr()).(isZeroer).IsZero()
}
if ti.isFlag(typeInfoFlagIsZeroer) {
return rv2i(v).(isZeroer).IsZero()
}
if ti.isFlag(typeInfoFlagComparable) {
return rv2i(v) == rv2i(reflect.Zero(vt))
}
if !checkStruct {
return false
}
// We only care about what we can encode/decode,
// so that is what we use to check omitEmpty.
for _, si := range ti.sfiSrc {
sfv, valid := si.field(v, false)
if valid && !isEmptyValue(sfv, tinfos, deref, checkStruct) {
return false
}
}
return true
}
// func roundFloat(x float64) float64 {
// t := math.Trunc(x)
// if math.Abs(x-t) >= 0.5 {
// return t + math.Copysign(1, x)
// }
// return t
// }
func panicToErr(h errstrDecorator, err *error) {
// Note: This method MUST be called directly from defer i.e. defer panicToErr ...
// else it seems the recover is not fully handled
if recoverPanicToErr {
if x := recover(); x != nil {
// fmt.Printf("panic'ing with: %v\n", x)
// debug.PrintStack()
panicValToErr(h, x, err)
}
}
}
func panicValToErr(h errstrDecorator, v interface{}, err *error) {
switch xerr := v.(type) {
case nil:
case error:
switch xerr {
case nil:
case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
// treat as special (bubble up)
*err = xerr
default:
h.wrapErrstr(xerr.Error(), err)
}
case string:
if xerr != "" {
h.wrapErrstr(xerr, err)
}
case fmt.Stringer:
if xerr != nil {
h.wrapErrstr(xerr.String(), err)
}
default:
h.wrapErrstr(v, err)
}
}
func isImmutableKind(k reflect.Kind) (v bool) {
return immutableKindsSet[k]
}
// ----
type codecFnInfo struct {
ti *typeInfo
xfFn Ext
xfTag uint64
seq seqType
addrD bool
addrF bool // if addrD, this says whether decode function can take a value or a ptr
addrE bool
ready bool // ready to use
}
// codecFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type codecFn struct {
i codecFnInfo
fe func(*Encoder, *codecFnInfo, reflect.Value)
fd func(*Decoder, *codecFnInfo, reflect.Value)
_ [1]uint64 // padding
}
type codecRtidFn struct {
rtid uintptr
fn *codecFn
}
type codecFner struct {
// hh Handle
h *BasicHandle
s []codecRtidFn
be bool
js bool
_ [6]byte // padding
_ [3]uint64 // padding
}
func (c *codecFner) reset(hh Handle) {
bh := hh.getBasicHandle()
// only reset iff extensions changed or *TypeInfos changed
var hhSame = true &&
c.h == bh && c.h.TypeInfos == bh.TypeInfos &&
len(c.h.extHandle) == len(bh.extHandle) &&
(len(c.h.extHandle) == 0 || &c.h.extHandle[0] == &bh.extHandle[0])
if !hhSame {
// c.hh = hh
c.h, bh = bh, c.h // swap both
_, c.js = hh.(*JsonHandle)
c.be = hh.isBinary()
for i := range c.s {
c.s[i].fn.i.ready = false
}
}
}
func (c *codecFner) get(rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *codecFn) {
rtid := rt2id(rt)
for _, x := range c.s {
if x.rtid == rtid {
// if rtid exists, then there's a *codenFn attached (non-nil)
fn = x.fn
if fn.i.ready {
return
}
break
}
}
var ti *typeInfo
if fn == nil {
fn = new(codecFn)
if c.s == nil {
c.s = make([]codecRtidFn, 0, 8)
}
c.s = append(c.s, codecRtidFn{rtid, fn})
} else {
ti = fn.i.ti
*fn = codecFn{}
fn.i.ti = ti
// fn.fe, fn.fd = nil, nil
}
fi := &(fn.i)
fi.ready = true
if ti == nil {
ti = c.h.getTypeInfo(rtid, rt)
fi.ti = ti
}
rk := reflect.Kind(ti.kind)
if checkCodecSelfer && (ti.cs || ti.csp) {
fn.fe = (*Encoder).selferMarshal
fn.fd = (*Decoder).selferUnmarshal
fi.addrF = true
fi.addrD = ti.csp
fi.addrE = ti.csp
} else if rtid == timeTypId {
fn.fe = (*Encoder).kTime
fn.fd = (*Decoder).kTime
} else if rtid == rawTypId {
fn.fe = (*Encoder).raw
fn.fd = (*Decoder).raw
} else if rtid == rawExtTypId {
fn.fe = (*Encoder).rawExt
fn.fd = (*Decoder).rawExt
fi.addrF = true
fi.addrD = true
fi.addrE = true
} else if xfFn := c.h.getExt(rtid); xfFn != nil {
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
fn.fe = (*Encoder).ext
fn.fd = (*Decoder).ext
fi.addrF = true
fi.addrD = true
if rk == reflect.Struct || rk == reflect.Array {
fi.addrE = true
}
} else if supportMarshalInterfaces && c.be && (ti.bm || ti.bmp) && (ti.bu || ti.bup) {
fn.fe = (*Encoder).binaryMarshal
fn.fd = (*Decoder).binaryUnmarshal
fi.addrF = true
fi.addrD = ti.bup
fi.addrE = ti.bmp
} else if supportMarshalInterfaces && !c.be && c.js && (ti.jm || ti.jmp) && (ti.ju || ti.jup) {
//If JSON, we should check JSONMarshal before textMarshal
fn.fe = (*Encoder).jsonMarshal
fn.fd = (*Decoder).jsonUnmarshal
fi.addrF = true
fi.addrD = ti.jup
fi.addrE = ti.jmp
} else if supportMarshalInterfaces && !c.be && (ti.tm || ti.tmp) && (ti.tu || ti.tup) {
fn.fe = (*Encoder).textMarshal
fn.fd = (*Decoder).textUnmarshal
fi.addrF = true
fi.addrD = ti.tup
fi.addrE = ti.tmp
} else {
if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
if ti.pkgpath == "" { // un-named slice or map
if idx := fastpathAV.index(rtid); idx != -1 {
fn.fe = fastpathAV[idx].encfn
fn.fd = fastpathAV[idx].decfn
fi.addrD = true
fi.addrF = false
}
} else {
// use mapping for underlying type if there
var rtu reflect.Type
if rk == reflect.Map {
rtu = reflect.MapOf(ti.key, ti.elem)
} else {
rtu = reflect.SliceOf(ti.elem)
}
rtuid := rt2id(rtu)
if idx := fastpathAV.index(rtuid); idx != -1 {
xfnf := fastpathAV[idx].encfn
xrt := fastpathAV[idx].rt
fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
xfnf(e, xf, xrv.Convert(xrt))
}
fi.addrD = true
fi.addrF = false // meaning it can be an address(ptr) or a value
xfnf2 := fastpathAV[idx].decfn
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
if xrv.Kind() == reflect.Ptr {
xfnf2(d, xf, xrv.Convert(reflect.PtrTo(xrt)))
} else {
xfnf2(d, xf, xrv.Convert(xrt))
}
}
}
}
}
if fn.fe == nil && fn.fd == nil {
switch rk {
case reflect.Bool:
fn.fe = (*Encoder).kBool
fn.fd = (*Decoder).kBool
case reflect.String:
fn.fe = (*Encoder).kString
fn.fd = (*Decoder).kString
case reflect.Int:
fn.fd = (*Decoder).kInt
fn.fe = (*Encoder).kInt
case reflect.Int8:
fn.fe = (*Encoder).kInt8
fn.fd = (*Decoder).kInt8
case reflect.Int16:
fn.fe = (*Encoder).kInt16
fn.fd = (*Decoder).kInt16
case reflect.Int32:
fn.fe = (*Encoder).kInt32
fn.fd = (*Decoder).kInt32
case reflect.Int64:
fn.fe = (*Encoder).kInt64
fn.fd = (*Decoder).kInt64
case reflect.Uint:
fn.fd = (*Decoder).kUint
fn.fe = (*Encoder).kUint
case reflect.Uint8:
fn.fe = (*Encoder).kUint8
fn.fd = (*Decoder).kUint8
case reflect.Uint16:
fn.fe = (*Encoder).kUint16
fn.fd = (*Decoder).kUint16
case reflect.Uint32:
fn.fe = (*Encoder).kUint32
fn.fd = (*Decoder).kUint32
case reflect.Uint64:
fn.fe = (*Encoder).kUint64
fn.fd = (*Decoder).kUint64
case reflect.Uintptr:
fn.fe = (*Encoder).kUintptr
fn.fd = (*Decoder).kUintptr
case reflect.Float32:
fn.fe = (*Encoder).kFloat32
fn.fd = (*Decoder).kFloat32
case reflect.Float64:
fn.fe = (*Encoder).kFloat64
fn.fd = (*Decoder).kFloat64
case reflect.Invalid:
fn.fe = (*Encoder).kInvalid
fn.fd = (*Decoder).kErr
case reflect.Chan:
fi.seq = seqTypeChan
fn.fe = (*Encoder).kSlice
fn.fd = (*Decoder).kSlice
case reflect.Slice:
fi.seq = seqTypeSlice
fn.fe = (*Encoder).kSlice
fn.fd = (*Decoder).kSlice
case reflect.Array:
fi.seq = seqTypeArray
fn.fe = (*Encoder).kSlice
fi.addrF = false
fi.addrD = false
rt2 := reflect.SliceOf(ti.elem)
fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
d.cfer().get(rt2, true, false).fd(d, xf, xrv.Slice(0, xrv.Len()))
}
// fn.fd = (*Decoder).kArray
case reflect.Struct:
if ti.anyOmitEmpty {
fn.fe = (*Encoder).kStruct
} else {
fn.fe = (*Encoder).kStructNoOmitempty
}
fn.fd = (*Decoder).kStruct
case reflect.Map:
fn.fe = (*Encoder).kMap
fn.fd = (*Decoder).kMap
case reflect.Interface:
// encode: reflect.Interface are handled already by preEncodeValue
fn.fd = (*Decoder).kInterface
fn.fe = (*Encoder).kErr
default:
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
fn.fe = (*Encoder).kErr
fn.fd = (*Decoder).kErr
}
}
}
return
}
type codecFnPooler struct {
cf *codecFner
cfp *sync.Pool
hh Handle
}
func (d *codecFnPooler) cfer() *codecFner {
if d.cf == nil {
var v interface{}
d.cfp, v = pool.codecFner()
d.cf = v.(*codecFner)
d.cf.reset(d.hh)
}
return d.cf
}
func (d *codecFnPooler) alwaysAtEnd() {
if d.cf != nil {
d.cfp.Put(d.cf)
d.cf, d.cfp = nil, nil
}
}
// ----
// these "checkOverflow" functions must be inlinable, and not call anybody.
// Overflow means that the value cannot be represented without wrapping/overflow.
// Overflow=false does not mean that the value can be represented without losing precision
// (especially for floating point).
type checkOverflow struct{}
// func (checkOverflow) Float16(f float64) (overflow bool) {
// panicv.errorf("unimplemented")
// if f < 0 {
// f = -f
// }
// return math.MaxFloat32 < f && f <= math.MaxFloat64
// }
func (checkOverflow) Float32(v float64) (overflow bool) {
if v < 0 {
v = -v
}
return math.MaxFloat32 < v && v <= math.MaxFloat64
}
func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
if bitsize == 0 || bitsize >= 64 || v == 0 {
return
}
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
overflow = true
}
return
}
func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
if bitsize == 0 || bitsize >= 64 || v == 0 {
return
}
if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
overflow = true
}
return
}
func (checkOverflow) SignedInt(v uint64) (overflow bool) {
//e.g. -127 to 128 for int8
pos := (v >> 63) == 0
ui2 := v & 0x7fffffffffffffff
if pos {
if ui2 > math.MaxInt64 {
overflow = true
}
} else {
if ui2 > math.MaxInt64-1 {
overflow = true
}
}
return
}
func (x checkOverflow) Float32V(v float64) float64 {
if x.Float32(v) {
panicv.errorf("float32 overflow: %v", v)
}
return v
}
func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
if x.Uint(v, bitsize) {
panicv.errorf("uint64 overflow: %v", v)
}
return v
}
func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
if x.Int(v, bitsize) {
panicv.errorf("int64 overflow: %v", v)
}
return v
}
func (x checkOverflow) SignedIntV(v uint64) int64 {
if x.SignedInt(v) {
panicv.errorf("uint64 to int64 overflow: %v", v)
}
return int64(v)
}
// ------------------ SORT -----------------
func isNaN(f float64) bool { return f != f }
// -----------------------
type ioFlusher interface {
Flush() error
}
type ioPeeker interface {
Peek(int) ([]byte, error)
}
type ioBuffered interface {
Buffered() int
}
// -----------------------
type intSlice []int64
type uintSlice []uint64
// type uintptrSlice []uintptr
type floatSlice []float64
type boolSlice []bool
type stringSlice []string
// type bytesSlice [][]byte
func (p intSlice) Len() int { return len(p) }
func (p intSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p intSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p uintSlice) Len() int { return len(p) }
func (p uintSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p uintSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// func (p uintptrSlice) Len() int { return len(p) }
// func (p uintptrSlice) Less(i, j int) bool { return p[i] < p[j] }
// func (p uintptrSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p floatSlice) Len() int { return len(p) }
func (p floatSlice) Less(i, j int) bool {
return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j])
}
func (p floatSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p stringSlice) Len() int { return len(p) }
func (p stringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p stringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// func (p bytesSlice) Len() int { return len(p) }
// func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[i], p[j]) == -1 }
// func (p bytesSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p boolSlice) Len() int { return len(p) }
func (p boolSlice) Less(i, j int) bool { return !p[i] && p[j] }
func (p boolSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// ---------------------
type intRv struct {
v int64
r reflect.Value
}
type intRvSlice []intRv
type uintRv struct {
v uint64
r reflect.Value
}
type uintRvSlice []uintRv
type floatRv struct {
v float64
r reflect.Value
}
type floatRvSlice []floatRv
type boolRv struct {
v bool
r reflect.Value
}
type boolRvSlice []boolRv
type stringRv struct {
v string
r reflect.Value
}
type stringRvSlice []stringRv
type bytesRv struct {
v []byte
r reflect.Value
}
type bytesRvSlice []bytesRv
type timeRv struct {
v time.Time
r reflect.Value
}
type timeRvSlice []timeRv
func (p intRvSlice) Len() int { return len(p) }
func (p intRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p intRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p uintRvSlice) Len() int { return len(p) }
func (p uintRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p uintRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p floatRvSlice) Len() int { return len(p) }
func (p floatRvSlice) Less(i, j int) bool {
return p[i].v < p[j].v || isNaN(p[i].v) && !isNaN(p[j].v)
}
func (p floatRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p stringRvSlice) Len() int { return len(p) }
func (p stringRvSlice) Less(i, j int) bool { return p[i].v < p[j].v }
func (p stringRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p bytesRvSlice) Len() int { return len(p) }
func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p boolRvSlice) Len() int { return len(p) }
func (p boolRvSlice) Less(i, j int) bool { return !p[i].v && p[j].v }
func (p boolRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p timeRvSlice) Len() int { return len(p) }
func (p timeRvSlice) Less(i, j int) bool { return p[i].v.Before(p[j].v) }
func (p timeRvSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// -----------------
type bytesI struct {
v []byte
i interface{}
}
type bytesISlice []bytesI
func (p bytesISlice) Len() int { return len(p) }
func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[i].v, p[j].v) == -1 }
func (p bytesISlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// -----------------
type set []uintptr
func (s *set) add(v uintptr) (exists bool) {
// e.ci is always nil, or len >= 1
x := *s
if x == nil {
x = make([]uintptr, 1, 8)
x[0] = v
*s = x
return
}
// typically, length will be 1. make this perform.
if len(x) == 1 {
if j := x[0]; j == 0 {
x[0] = v
} else if j == v {
exists = true
} else {
x = append(x, v)
*s = x
}
return
}
// check if it exists
for _, j := range x {
if j == v {
exists = true
return
}
}
// try to replace a "deleted" slot
for i, j := range x {
if j == 0 {
x[i] = v
return
}
}
// if unable to replace deleted slot, just append it.
x = append(x, v)
*s = x
return
}
func (s *set) remove(v uintptr) (exists bool) {
x := *s
if len(x) == 0 {
return
}
if len(x) == 1 {
if x[0] == v {
x[0] = 0
}
return
}
for i, j := range x {
if j == v {
exists = true
x[i] = 0 // set it to 0, as way to delete it.
// copy(x[i:], x[i+1:])
// x = x[:len(x)-1]
return
}
}
return
}
// ------
// bitset types are better than [256]bool, because they permit the whole
// bitset array being on a single cache line and use less memory.
// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
type bitset256 [32]byte
func (x *bitset256) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset256) issetv(pos byte) byte {
return x[pos>>3] & (1 << (pos & 7))
}
func (x *bitset256) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset256) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
type bitset128 [16]byte
func (x *bitset128) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset128) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset128) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
type bitset32 [4]byte
func (x *bitset32) isset(pos byte) bool {
return x[pos>>3]&(1<<(pos&7)) != 0
}
func (x *bitset32) set(pos byte) {
x[pos>>3] |= (1 << (pos & 7))
}
// func (x *bitset32) unset(pos byte) {
// x[pos>>3] &^= (1 << (pos & 7))
// }
// type bit2set256 [64]byte
// func (x *bit2set256) set(pos byte, v1, v2 bool) {
// var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6
// if v1 {
// x[pos>>2] |= 1 << (pos2 + 1)
// }
// if v2 {
// x[pos>>2] |= 1 << pos2
// }
// }
// func (x *bit2set256) get(pos byte) uint8 {
// var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6
// return x[pos>>2] << (6 - pos2) >> 6 // 11000000 -> 00000011
// }
// ------------
type pooler struct {
dn sync.Pool // for decNaked
cfn sync.Pool // for codecFner
tiload sync.Pool
strRv8, strRv16, strRv32, strRv64, strRv128 sync.Pool // for stringRV
}
func (p *pooler) init() {
p.strRv8.New = func() interface{} { return new([8]stringRv) }
p.strRv16.New = func() interface{} { return new([16]stringRv) }
p.strRv32.New = func() interface{} { return new([32]stringRv) }
p.strRv64.New = func() interface{} { return new([64]stringRv) }
p.strRv128.New = func() interface{} { return new([128]stringRv) }
p.dn.New = func() interface{} { x := new(decNaked); x.init(); return x }
p.tiload.New = func() interface{} { return new(typeInfoLoadArray) }
p.cfn.New = func() interface{} { return new(codecFner) }
}
func (p *pooler) stringRv8() (sp *sync.Pool, v interface{}) {
return &p.strRv8, p.strRv8.Get()
}
func (p *pooler) stringRv16() (sp *sync.Pool, v interface{}) {
return &p.strRv16, p.strRv16.Get()
}
func (p *pooler) stringRv32() (sp *sync.Pool, v interface{}) {
return &p.strRv32, p.strRv32.Get()
}
func (p *pooler) stringRv64() (sp *sync.Pool, v interface{}) {
return &p.strRv64, p.strRv64.Get()
}
func (p *pooler) stringRv128() (sp *sync.Pool, v interface{}) {
return &p.strRv128, p.strRv128.Get()
}
func (p *pooler) decNaked() (sp *sync.Pool, v interface{}) {
return &p.dn, p.dn.Get()
}
func (p *pooler) codecFner() (sp *sync.Pool, v interface{}) {
return &p.cfn, p.cfn.Get()
}
func (p *pooler) tiLoad() (sp *sync.Pool, v interface{}) {
return &p.tiload, p.tiload.Get()
}
// func (p *pooler) decNaked() (v *decNaked, f func(*decNaked) ) {
// sp := &(p.dn)
// vv := sp.Get()
// return vv.(*decNaked), func(x *decNaked) { sp.Put(vv) }
// }
// func (p *pooler) decNakedGet() (v interface{}) {
// return p.dn.Get()
// }
// func (p *pooler) codecFnerGet() (v interface{}) {
// return p.cfn.Get()
// }
// func (p *pooler) tiLoadGet() (v interface{}) {
// return p.tiload.Get()
// }
// func (p *pooler) decNakedPut(v interface{}) {
// p.dn.Put(v)
// }
// func (p *pooler) codecFnerPut(v interface{}) {
// p.cfn.Put(v)
// }
// func (p *pooler) tiLoadPut(v interface{}) {
// p.tiload.Put(v)
// }
type panicHdl struct{}
func (panicHdl) errorv(err error) {
if err != nil {
panic(err)
}
}
func (panicHdl) errorstr(message string) {
if message != "" {
panic(message)
}
}
func (panicHdl) errorf(format string, params ...interface{}) {
if format != "" {
if len(params) == 0 {
panic(format)
} else {
panic(fmt.Sprintf(format, params...))
}
}
}
type errstrDecorator interface {
wrapErrstr(interface{}, *error)
}
type errstrDecoratorDef struct{}
func (errstrDecoratorDef) wrapErrstr(v interface{}, e *error) { *e = fmt.Errorf("%v", v) }
type must struct{}
func (must) String(s string, err error) string {
if err != nil {
panicv.errorv(err)
}
return s
}
func (must) Int(s int64, err error) int64 {
if err != nil {
panicv.errorv(err)
}
return s
}
func (must) Uint(s uint64, err error) uint64 {
if err != nil {
panicv.errorv(err)
}
return s
}
func (must) Float(s float64, err error) float64 {
if err != nil {
panicv.errorv(err)
}
return s
}
// xdebugf prints the message in red on the terminal.
// Use it in place of fmt.Printf (which it calls internally)
func xdebugf(pattern string, args ...interface{}) {
var delim string
if len(pattern) > 0 && pattern[len(pattern)-1] != '\n' {
delim = "\n"
}
fmt.Printf("\033[1;31m"+pattern+delim+"\033[0m", args...)
}
// func isImmutableKind(k reflect.Kind) (v bool) {
// return false ||
// k == reflect.Int ||
// k == reflect.Int8 ||
// k == reflect.Int16 ||
// k == reflect.Int32 ||
// k == reflect.Int64 ||
// k == reflect.Uint ||
// k == reflect.Uint8 ||
// k == reflect.Uint16 ||
// k == reflect.Uint32 ||
// k == reflect.Uint64 ||
// k == reflect.Uintptr ||
// k == reflect.Float32 ||
// k == reflect.Float64 ||
// k == reflect.Bool ||
// k == reflect.String
// }
// func timeLocUTCName(tzint int16) string {
// if tzint == 0 {
// return "UTC"
// }
// var tzname = []byte("UTC+00:00")
// //tzname := fmt.Sprintf("UTC%s%02d:%02d", tzsign, tz/60, tz%60) //perf issue using Sprintf. inline below.
// //tzhr, tzmin := tz/60, tz%60 //faster if u convert to int first
// var tzhr, tzmin int16
// if tzint < 0 {
// tzname[3] = '-' // (TODO: verify. this works here)
// tzhr, tzmin = -tzint/60, (-tzint)%60
// } else {
// tzhr, tzmin = tzint/60, tzint%60
// }
// tzname[4] = timeDigits[tzhr/10]
// tzname[5] = timeDigits[tzhr%10]
// tzname[7] = timeDigits[tzmin/10]
// tzname[8] = timeDigits[tzmin%10]
// return string(tzname)
// //return time.FixedZone(string(tzname), int(tzint)*60)
// }