darknet/src/avgpool_layer_kernels.cu

58 lines
1.5 KiB
Plaintext
Raw Normal View History

2015-07-14 01:04:21 +03:00
extern "C" {
#include "avgpool_layer.h"
#include "cuda.h"
}
__global__ void forward_avgpool_layer_kernel(int n, int w, int h, int c, float *input, float *output)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= n) return;
int k = id % c;
id /= c;
int b = id;
int i;
int out_index = (k + c*b);
output[out_index] = 0;
for(i = 0; i < w*h; ++i){
int in_index = i + h*w*(k + b*c);
output[out_index] += input[in_index];
}
output[out_index] /= w*h;
}
__global__ void backward_avgpool_layer_kernel(int n, int w, int h, int c, float *in_delta, float *out_delta)
{
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
if(id >= n) return;
int k = id % c;
id /= c;
int b = id;
int i;
int out_index = (k + c*b);
for(i = 0; i < w*h; ++i){
int in_index = i + h*w*(k + b*c);
2015-07-22 02:09:33 +03:00
in_delta[in_index] += out_delta[out_index] / (w*h);
2015-07-14 01:04:21 +03:00
}
}
extern "C" void forward_avgpool_layer_gpu(avgpool_layer layer, network_state state)
{
size_t n = layer.c*layer.batch;
forward_avgpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.w, layer.h, layer.c, state.input, layer.output_gpu);
check_error(cudaPeekAtLastError());
}
extern "C" void backward_avgpool_layer_gpu(avgpool_layer layer, network_state state)
{
size_t n = layer.c*layer.batch;
backward_avgpool_layer_kernel<<<cuda_gridsize(n), BLOCK>>>(n, layer.w, layer.h, layer.c, state.delta, layer.delta_gpu);
check_error(cudaPeekAtLastError());
}