darknet/src/lsd.c

925 lines
30 KiB
C
Raw Normal View History

#include "network.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "blas.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
void train_lsd3(char *fcfg, char *fweight, char *gcfg, char *gweight, char *acfg, char *aweight, int clear)
{
#ifdef GPU
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
//char *style_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *style_images = "/home/pjreddie/zelda.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
network fnet = load_network(fcfg, fweight, clear);
network gnet = load_network(gcfg, gweight, clear);
network anet = load_network(acfg, aweight, clear);
char *gbase = basecfg(gcfg);
char *abase = basecfg(acfg);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet.learning_rate, gnet.momentum, gnet.decay);
int imgs = gnet.batch*gnet.subdivisions;
int i = *gnet.seen/imgs;
data train, tbuffer;
data style, sbuffer;
list *slist = get_paths(style_images);
char **spaths = (char **)list_to_array(slist);
list *tlist = get_paths(train_images);
char **tpaths = (char **)list_to_array(tlist);
load_args targs= get_base_args(gnet);
targs.paths = tpaths;
targs.n = imgs;
targs.m = tlist->size;
targs.d = &tbuffer;
targs.type = CLASSIFICATION_DATA;
targs.classes = 1;
char *ls[1] = {"zelda"};
targs.labels = ls;
load_args sargs = get_base_args(gnet);
sargs.paths = spaths;
sargs.n = imgs;
sargs.m = slist->size;
sargs.d = &sbuffer;
sargs.type = CLASSIFICATION_DATA;
sargs.classes = 1;
sargs.labels = ls;
pthread_t tload_thread = load_data_in_thread(targs);
pthread_t sload_thread = load_data_in_thread(sargs);
clock_t time;
float aloss_avg = -1;
float floss_avg = -1;
network_state fstate = {0};
fstate.index = 0;
fstate.net = fnet;
int x_size = get_network_input_size(fnet)*fnet.batch;
int y_size = get_network_output_size(fnet)*fnet.batch;
fstate.input = cuda_make_array(0, x_size);
fstate.truth = cuda_make_array(0, y_size);
fstate.delta = cuda_make_array(0, x_size);
fstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
float *ones = cuda_make_array(0, anet.batch);
float *zeros = cuda_make_array(0, anet.batch);
fill_ongpu(anet.batch, .99, ones, 1);
fill_ongpu(anet.batch, .01, zeros, 1);
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ax_size = get_network_input_size(anet)*anet.batch;
int ay_size = get_network_output_size(anet)*anet.batch;
astate.input = 0;
astate.truth = ones;
astate.delta = cuda_make_array(0, ax_size);
astate.train = 1;
network_state gstate = {0};
gstate.index = 0;
gstate.net = gnet;
int gx_size = get_network_input_size(gnet)*gnet.batch;
int gy_size = get_network_output_size(gnet)*gnet.batch;
gstate.input = cuda_make_array(0, gx_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
while (get_current_batch(gnet) < gnet.max_batches) {
i += 1;
time=clock();
pthread_join(tload_thread, 0);
pthread_join(sload_thread, 0);
train = tbuffer;
style = sbuffer;
tload_thread = load_data_in_thread(targs);
sload_thread = load_data_in_thread(sargs);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data generated = copy_data(train);
time=clock();
int j, k;
float floss = 0;
for(j = 0; j < fnet.subdivisions; ++j){
layer imlayer = gnet.layers[gnet.n - 1];
get_next_batch(train, fnet.batch, j*fnet.batch, X, y);
cuda_push_array(fstate.input, X, x_size);
cuda_push_array(gstate.input, X, gx_size);
*gnet.seen += gnet.batch;
forward_network_gpu(fnet, fstate);
float *feats = fnet.layers[fnet.n - 2].output_gpu;
copy_ongpu(y_size, feats, 1, fstate.truth, 1);
forward_network_gpu(gnet, gstate);
float *gen = gnet.layers[gnet.n-1].output_gpu;
copy_ongpu(x_size, gen, 1, fstate.input, 1);
fill_ongpu(x_size, 0, fstate.delta, 1);
forward_network_gpu(fnet, fstate);
backward_network_gpu(fnet, fstate);
//HERE
astate.input = gen;
fill_ongpu(ax_size, 0, astate.delta, 1);
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
float *delta = imlayer.delta_gpu;
fill_ongpu(x_size, 0, delta, 1);
scal_ongpu(x_size, 100, astate.delta, 1);
scal_ongpu(x_size, .00001, fstate.delta, 1);
axpy_ongpu(x_size, 1, fstate.delta, 1, delta, 1);
axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
//fill_ongpu(x_size, 0, delta, 1);
//cuda_push_array(delta, X, x_size);
//axpy_ongpu(x_size, -1, imlayer.output_gpu, 1, delta, 1);
//printf("pix error: %f\n", cuda_mag_array(delta, x_size));
printf("fea error: %f\n", cuda_mag_array(fstate.delta, x_size));
printf("adv error: %f\n", cuda_mag_array(astate.delta, x_size));
//axpy_ongpu(x_size, 1, astate.delta, 1, delta, 1);
backward_network_gpu(gnet, gstate);
floss += get_network_cost(fnet) /(fnet.subdivisions*fnet.batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
for(k = 0; k < gnet.batch; ++k){
int index = j*gnet.batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
generated.y.vals[index][0] = .01;
}
}
/*
image sim = float_to_image(anet.w, anet.h, anet.c, style.X.vals[j]);
show_image(sim, "style");
cvWaitKey(0);
*/
harmless_update_network_gpu(anet);
data merge = concat_data(style, generated);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(gnet);
free_data(merge);
free_data(train);
free_data(generated);
free_data(style);
if (aloss_avg < 0) aloss_avg = aloss;
if (floss_avg < 0) floss_avg = floss;
aloss_avg = aloss_avg*.9 + aloss*.1;
floss_avg = floss_avg*.9 + floss*.1;
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, floss, aloss, floss_avg, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, gbase, i);
save_weights(gnet, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, gbase);
save_weights(gnet, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
#endif
}
void train_pix2pix(char *cfg, char *weight, char *acfg, char *aweight, int clear)
{
#ifdef GPU
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfg);
char *abase = basecfg(acfg);
printf("%s\n", base);
network net = load_network(cfg, weight, clear);
network anet = load_network(acfg, aweight, clear);
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net.n; ++i) {
if (net.layers[i].out_c == 3) {
imlayer = net.layers[i];
break;
}
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
i = *net.seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
args.size = net.w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net.batch;
int y_size = x_size;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = cuda_make_array(0, y_size);
gstate.delta = 0;
gstate.train = 1;
float *pixs = calloc(x_size, sizeof(float));
float *graypixs = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet.batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_ongpu(ay_size, .9, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
while (get_current_batch(net) < net.max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data gray = copy_data(train);
for(j = 0; j < imgs; ++j){
image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]);
grayscale_image_3c(gim);
train.y.vals[j][0] = .9;
image yim = float_to_image(net.w, net.h, net.c, train.X.vals[j]);
//rgb_to_yuv(yim);
}
time=clock();
float gloss = 0;
for(j = 0; j < net.subdivisions; ++j){
get_next_batch(train, net.batch, j*net.batch, pixs, y);
get_next_batch(gray, net.batch, j*net.batch, graypixs, y);
cuda_push_array(gstate.input, graypixs, x_size);
cuda_push_array(gstate.truth, pixs, x_size);
/*
image origi = float_to_image(net.w, net.h, 3, pixs);
image grayi = float_to_image(net.w, net.h, 3, graypixs);
show_image(grayi, "gray");
show_image(origi, "orig");
cvWaitKey(0);
*/
*net.seen += net.batch;
forward_network_gpu(net, gstate);
fill_ongpu(imlayer.outputs, 0, imerror, 1);
astate.input = imlayer.output_gpu;
astate.delta = imerror;
astate.truth = ones_gpu;
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
scal_ongpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1);
backward_network_gpu(net, gstate);
scal_ongpu(imlayer.outputs, 100, imerror, 1);
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs));
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
for(k = 0; k < net.batch; ++k){
int index = j*net.batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1);
gray.y.vals[index][0] = .1;
}
}
harmless_update_network_gpu(anet);
data merge = concat_data(train, gray);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(net);
update_network_gpu(anet);
free_data(merge);
free_data(train);
free_data(gray);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
gloss_avg = gloss_avg*.9 + gloss*.1;
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
#endif
}
void train_colorizer(char *cfg, char *weight, char *acfg, char *aweight, int clear)
{
#ifdef GPU
//char *train_images = "/home/pjreddie/data/coco/train1.txt";
//char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *train_images = "/home/pjreddie/data/imagenet/imagenet1k.train.list";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfg);
char *abase = basecfg(acfg);
printf("%s\n", base);
network net = load_network(cfg, weight, clear);
network anet = load_network(acfg, aweight, clear);
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net.n; ++i) {
if (net.layers[i].out_c == 3) {
imlayer = net.layers[i];
break;
}
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
i = *net.seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
args.size = net.w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"imagenet"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net.batch;
int y_size = x_size;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = cuda_make_array(0, y_size);
gstate.delta = 0;
gstate.train = 1;
float *pixs = calloc(x_size, sizeof(float));
float *graypixs = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet.batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_ongpu(ay_size, .99, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
while (get_current_batch(net) < net.max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data gray = copy_data(train);
for(j = 0; j < imgs; ++j){
image gim = float_to_image(net.w, net.h, net.c, gray.X.vals[j]);
grayscale_image_3c(gim);
train.y.vals[j][0] = .99;
image yim = float_to_image(net.w, net.h, net.c, train.X.vals[j]);
//rgb_to_yuv(yim);
}
time=clock();
float gloss = 0;
for(j = 0; j < net.subdivisions; ++j){
get_next_batch(train, net.batch, j*net.batch, pixs, y);
get_next_batch(gray, net.batch, j*net.batch, graypixs, y);
cuda_push_array(gstate.input, graypixs, x_size);
cuda_push_array(gstate.truth, pixs, x_size);
/*
image origi = float_to_image(net.w, net.h, 3, pixs);
image grayi = float_to_image(net.w, net.h, 3, graypixs);
show_image(grayi, "gray");
show_image(origi, "orig");
cvWaitKey(0);
*/
*net.seen += net.batch;
forward_network_gpu(net, gstate);
fill_ongpu(imlayer.outputs, 0, imerror, 1);
astate.input = imlayer.output_gpu;
astate.delta = imerror;
astate.truth = ones_gpu;
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
scal_ongpu(imlayer.outputs, .1, net.layers[net.n-1].delta_gpu, 1);
backward_network_gpu(net, gstate);
scal_ongpu(imlayer.outputs, 100, imerror, 1);
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
printf("features %f\n", cuda_mag_array(net.layers[net.n-1].delta_gpu, imlayer.outputs));
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
for(k = 0; k < net.batch; ++k){
int index = j*net.batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, gray.X.vals[index], 1);
gray.y.vals[index][0] = .01;
}
}
harmless_update_network_gpu(anet);
data merge = concat_data(train, gray);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(net);
update_network_gpu(anet);
free_data(merge);
free_data(train);
free_data(gray);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
gloss_avg = gloss_avg*.9 + gloss*.1;
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
#endif
}
void train_lsd2(char *cfgfile, char *weightfile, char *acfgfile, char *aweightfile, int clear)
{
#ifdef GPU
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net.seen = 0;
char *abase = basecfg(acfgfile);
network anet = parse_network_cfg(acfgfile);
if(aweightfile){
load_weights(&anet, aweightfile);
}
if(clear) *anet.seen = 0;
int i, j, k;
layer imlayer = {0};
for (i = 0; i < net.n; ++i) {
if (net.layers[i].out_c == 3) {
imlayer = net.layers[i];
break;
}
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
i = *net.seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
args.size = net.w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
network_state gstate = {0};
gstate.index = 0;
gstate.net = net;
int x_size = get_network_input_size(net)*net.batch;
int y_size = 1*net.batch;
gstate.input = cuda_make_array(0, x_size);
gstate.truth = 0;
gstate.delta = 0;
gstate.train = 1;
float *X = calloc(x_size, sizeof(float));
float *y = calloc(y_size, sizeof(float));
network_state astate = {0};
astate.index = 0;
astate.net = anet;
int ay_size = get_network_output_size(anet)*anet.batch;
astate.input = 0;
astate.truth = 0;
astate.delta = 0;
astate.train = 1;
float *imerror = cuda_make_array(0, imlayer.outputs);
float *ones_gpu = cuda_make_array(0, ay_size);
fill_ongpu(ay_size, 1, ones_gpu, 1);
float aloss_avg = -1;
float gloss_avg = -1;
//data generated = copy_data(train);
while (get_current_batch(net) < net.max_batches) {
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
data generated = copy_data(train);
time=clock();
float gloss = 0;
for(j = 0; j < net.subdivisions; ++j){
get_next_batch(train, net.batch, j*net.batch, X, y);
cuda_push_array(gstate.input, X, x_size);
*net.seen += net.batch;
forward_network_gpu(net, gstate);
fill_ongpu(imlayer.outputs, 0, imerror, 1);
astate.input = imlayer.output_gpu;
astate.delta = imerror;
astate.truth = ones_gpu;
forward_network_gpu(anet, astate);
backward_network_gpu(anet, astate);
scal_ongpu(imlayer.outputs, 1, imerror, 1);
axpy_ongpu(imlayer.outputs, 1, imerror, 1, imlayer.delta_gpu, 1);
backward_network_gpu(net, gstate);
printf("features %f\n", cuda_mag_array(imlayer.delta_gpu, imlayer.outputs));
printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs));
gloss += get_network_cost(net) /(net.subdivisions*net.batch);
cuda_pull_array(imlayer.output_gpu, imlayer.output, x_size);
for(k = 0; k < net.batch; ++k){
int index = j*net.batch + k;
copy_cpu(imlayer.outputs, imlayer.output + k*imlayer.outputs, 1, generated.X.vals[index], 1);
generated.y.vals[index][0] = 0;
}
}
harmless_update_network_gpu(anet);
data merge = concat_data(train, generated);
randomize_data(merge);
float aloss = train_network(anet, merge);
update_network_gpu(net);
update_network_gpu(anet);
free_data(merge);
free_data(train);
free_data(generated);
if (aloss_avg < 0) aloss_avg = aloss;
aloss_avg = aloss_avg*.9 + aloss*.1;
gloss_avg = gloss_avg*.9 + gloss*.1;
printf("%d: gen: %f, adv: %f | gen_avg: %f, adv_avg: %f, %f rate, %lf seconds, %d images\n", i, gloss, aloss, gloss_avg, aloss_avg, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
save_weights(anet, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
sprintf(buff, "%s/%s.backup", backup_directory, abase);
save_weights(anet, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
#endif
}
void train_lsd(char *cfgfile, char *weightfile, int clear)
{
char *train_images = "/home/pjreddie/data/coco/trainvalno5k.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
if(clear) *net.seen = 0;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
data train, buffer;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.d = &buffer;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
args.size = net.w;
args.type = CLASSIFICATION_DATA;
args.classes = 1;
char *ls[1] = {"coco"};
args.labels = ls;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
void test_lsd(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
int i, imlayer = 0;
for (i = 0; i < net.n; ++i) {
if (net.layers[i].out_c == 3) {
imlayer = i;
printf("%d\n", i);
break;
}
}
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
image resized = resize_min(im, net.w);
image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
//grayscale_image_3c(crop);
float *X = crop.data;
time=clock();
network_predict(net, X);
image out = get_network_image_layer(net, imlayer);
//yuv_to_rgb(out);
constrain_image(out);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
show_image(out, "out");
show_image(crop, "crop");
save_image(out, "out");
#ifdef OPENCV
cvWaitKey(0);
#endif
free_image(im);
free_image(resized);
free_image(crop);
if (filename) break;
}
}
void run_lsd(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
int clear = find_arg(argc, argv, "-clear");
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5] : 0;
char *acfg = argv[5];
char *aweights = (argc > 6) ? argv[6] : 0;
if(0==strcmp(argv[2], "train")) train_lsd(cfg, weights, clear);
else if(0==strcmp(argv[2], "train2")) train_lsd2(cfg, weights, acfg, aweights, clear);
else if(0==strcmp(argv[2], "traincolor")) train_colorizer(cfg, weights, acfg, aweights, clear);
else if(0==strcmp(argv[2], "train3")) train_lsd3(argv[3], argv[4], argv[5], argv[6], argv[7], argv[8], clear);
else if(0==strcmp(argv[2], "test")) test_lsd(cfg, weights, filename);
/*
else if(0==strcmp(argv[2], "valid")) validate_lsd(cfg, weights);
*/
}