darknet/cfg/yolov2.cfg

259 lines
2.7 KiB
INI
Raw Normal View History

2016-06-23 08:29:57 +03:00
[net]
# Testing
batch=1
subdivisions=1
# Training
# batch=64
# subdivisions=8
2018-08-15 20:59:59 +03:00
width=608
height=608
2016-06-23 08:29:57 +03:00
channels=3
momentum=0.9
decay=0.0005
2016-11-17 23:18:19 +03:00
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
2016-06-23 08:29:57 +03:00
learning_rate=0.001
burn_in=1000
2018-03-25 10:51:26 +03:00
max_batches = 500200
2016-06-23 08:29:57 +03:00
policy=steps
2018-03-25 10:51:26 +03:00
steps=400000,450000
scales=.1,.1
2016-06-23 08:29:57 +03:00
[convolutional]
batch_normalize=1
2016-11-17 23:18:19 +03:00
filters=32
size=3
stride=1
2016-06-23 08:29:57 +03:00
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
2016-11-17 23:18:19 +03:00
filters=64
2016-06-23 08:29:57 +03:00
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
2016-11-17 23:18:19 +03:00
filters=64
2016-06-23 08:29:57 +03:00
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
2016-11-17 23:18:19 +03:00
filters=128
2016-06-23 08:29:57 +03:00
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
2016-11-17 23:18:19 +03:00
size=3
2016-06-23 08:29:57 +03:00
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
2016-11-17 23:18:19 +03:00
filters=128
size=1
2016-06-23 08:29:57 +03:00
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
2016-11-17 23:18:19 +03:00
size=3
2016-06-23 08:29:57 +03:00
stride=1
pad=1
activation=leaky
2016-11-17 23:18:19 +03:00
[maxpool]
size=2
stride=2
2016-06-23 08:29:57 +03:00
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=3
stride=1
pad=1
activation=leaky
2016-11-17 23:18:19 +03:00
[maxpool]
size=2
stride=2
2016-06-23 08:29:57 +03:00
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=1024
size=3
stride=1
pad=1
activation=leaky
2016-11-17 23:18:19 +03:00
2016-06-23 08:29:57 +03:00
#######
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
2016-11-17 23:18:19 +03:00
[route]
layers=-9
[convolutional]
batch_normalize=1
size=1
stride=1
pad=1
filters=64
activation=leaky
2016-11-17 23:18:19 +03:00
[reorg]
stride=2
[route]
layers=-1,-4
2016-11-17 23:18:19 +03:00
2016-06-23 08:29:57 +03:00
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky
2016-11-17 23:18:19 +03:00
[convolutional]
size=1
2016-06-23 08:29:57 +03:00
stride=1
pad=1
2018-03-25 10:51:26 +03:00
filters=425
2016-06-23 08:29:57 +03:00
activation=linear
2016-11-17 23:18:19 +03:00
[region]
2018-03-25 10:51:26 +03:00
anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
2016-11-17 23:18:19 +03:00
bias_match=1
2018-03-25 10:51:26 +03:00
classes=80
2016-06-23 08:29:57 +03:00
coords=4
2016-11-17 23:18:19 +03:00
num=5
softmax=1
jitter=.3
2016-11-17 23:18:19 +03:00
rescore=1
2016-06-23 08:29:57 +03:00
2016-11-17 23:18:19 +03:00
object_scale=5
noobject_scale=1
2016-06-23 08:29:57 +03:00
class_scale=1
2016-11-17 23:18:19 +03:00
coord_scale=1
2016-06-23 08:29:57 +03:00
2016-11-17 23:18:19 +03:00
absolute=1
thresh = .6
random=1