mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
112 lines
3.1 KiB
C
112 lines
3.1 KiB
C
|
#include "reorg_layer.h"
|
||
|
#include "cuda.h"
|
||
|
#include "blas.h"
|
||
|
#include <stdio.h>
|
||
|
|
||
|
|
||
|
layer make_reorg_layer(int batch, int h, int w, int c, int stride)
|
||
|
{
|
||
|
layer l = {0};
|
||
|
l.type = REORG;
|
||
|
l.batch = batch;
|
||
|
l.stride = stride;
|
||
|
l.h = h;
|
||
|
l.w = w;
|
||
|
l.c = c;
|
||
|
l.out_w = w*stride;
|
||
|
l.out_h = h*stride;
|
||
|
l.out_c = c/(stride*stride);
|
||
|
fprintf(stderr, "Reorg Layer: %d x %d x %d image -> %d x %d x %d image, \n", w,h,c,l.out_w, l.out_h, l.out_c);
|
||
|
l.outputs = l.out_h * l.out_w * l.out_c;
|
||
|
l.inputs = h*w*c;
|
||
|
int output_size = l.out_h * l.out_w * l.out_c * batch;
|
||
|
l.output = calloc(output_size, sizeof(float));
|
||
|
l.delta = calloc(output_size, sizeof(float));
|
||
|
#ifdef GPU
|
||
|
l.output_gpu = cuda_make_array(l.output, output_size);
|
||
|
l.delta_gpu = cuda_make_array(l.delta, output_size);
|
||
|
#endif
|
||
|
return l;
|
||
|
}
|
||
|
|
||
|
void resize_reorg_layer(layer *l, int w, int h)
|
||
|
{
|
||
|
int stride = l->stride;
|
||
|
|
||
|
l->h = h;
|
||
|
l->w = w;
|
||
|
|
||
|
l->out_w = w*stride;
|
||
|
l->out_h = h*stride;
|
||
|
|
||
|
l->outputs = l->out_h * l->out_w * l->out_c;
|
||
|
l->inputs = l->outputs;
|
||
|
int output_size = l->outputs * l->batch;
|
||
|
|
||
|
l->output = realloc(l->output, output_size * sizeof(float));
|
||
|
l->delta = realloc(l->delta, output_size * sizeof(float));
|
||
|
|
||
|
#ifdef GPU
|
||
|
cuda_free(l->output_gpu);
|
||
|
cuda_free(l->delta_gpu);
|
||
|
l->output_gpu = cuda_make_array(l->output, output_size);
|
||
|
l->delta_gpu = cuda_make_array(l->delta, output_size);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void forward_reorg_layer(const layer l, network_state state)
|
||
|
{
|
||
|
int b,i,j,k;
|
||
|
|
||
|
for(b = 0; b < l.batch; ++b){
|
||
|
for(k = 0; k < l.c; ++k){
|
||
|
for(j = 0; j < l.h; ++j){
|
||
|
for(i = 0; i < l.w; ++i){
|
||
|
int in_index = i + l.w*(j + l.h*(k + l.c*b));
|
||
|
|
||
|
int c2 = k % l.out_c;
|
||
|
int offset = k / l.out_c;
|
||
|
int w2 = i*l.stride + offset % l.stride;
|
||
|
int h2 = j*l.stride + offset / l.stride;
|
||
|
int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
|
||
|
l.output[out_index] = state.input[in_index];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void backward_reorg_layer(const layer l, network_state state)
|
||
|
{
|
||
|
int b,i,j,k;
|
||
|
|
||
|
for(b = 0; b < l.batch; ++b){
|
||
|
for(k = 0; k < l.c; ++k){
|
||
|
for(j = 0; j < l.h; ++j){
|
||
|
for(i = 0; i < l.w; ++i){
|
||
|
int in_index = i + l.w*(j + l.h*(k + l.c*b));
|
||
|
|
||
|
int c2 = k % l.out_c;
|
||
|
int offset = k / l.out_c;
|
||
|
int w2 = i*l.stride + offset % l.stride;
|
||
|
int h2 = j*l.stride + offset / l.stride;
|
||
|
int out_index = w2 + l.out_w*(h2 + l.out_h*(c2 + l.out_c*b));
|
||
|
state.delta[in_index] = l.delta[out_index];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef GPU
|
||
|
void forward_reorg_layer_gpu(layer l, network_state state)
|
||
|
{
|
||
|
reorg_ongpu(state.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.output_gpu);
|
||
|
}
|
||
|
|
||
|
void backward_reorg_layer_gpu(layer l, network_state state)
|
||
|
{
|
||
|
reorg_ongpu(l.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, state.delta);
|
||
|
}
|
||
|
#endif
|