darknet/cfg/yolo-coco.cfg

256 lines
2.6 KiB
INI
Raw Normal View History

2015-11-26 22:48:01 +03:00
[net]
2016-06-26 02:13:54 +03:00
batch=64
subdivisions=4
2015-11-26 22:48:01 +03:00
height=448
width=448
channels=3
momentum=0.9
decay=0.0005
2016-09-08 10:04:39 +03:00
hue = .1
saturation=.75
exposure=.75
2015-11-26 22:48:01 +03:00
2016-09-08 10:04:39 +03:00
learning_rate=0.0005
policy=steps
steps=200,400,600,800,100000,150000
scales=2.5,2,2,2,.1,.1
max_batches = 200000
2015-11-26 22:48:01 +03:00
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=64
size=7
stride=2
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=192
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=256
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=1024
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=1024
size=3
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=512
size=1
stride=1
pad=1
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
filters=1024
size=3
stride=1
pad=1
activation=leaky
2016-09-08 10:04:39 +03:00
#######
2015-11-26 22:48:01 +03:00
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
size=3
stride=2
pad=1
filters=1024
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
size=3
stride=1
pad=1
filters=1024
activation=leaky
[convolutional]
2016-09-08 10:04:39 +03:00
batch_normalize=1
2015-11-26 22:48:01 +03:00
size=3
stride=1
pad=1
filters=1024
activation=leaky
[local]
size=3
stride=1
pad=1
2016-09-08 10:04:39 +03:00
filters=256
2015-11-26 22:48:01 +03:00
activation=leaky
[connected]
2016-09-08 10:04:39 +03:00
output= 4655
2015-11-26 22:48:01 +03:00
activation=linear
[detection]
classes=80
coords=4
rescore=1
side=7
2016-09-08 10:04:39 +03:00
num=3
2015-11-26 22:48:01 +03:00
softmax=0
sqrt=1
jitter=.2
object_scale=1
noobject_scale=.5
class_scale=1
coord_scale=5