darknet/src/connected_layer.c

97 lines
2.8 KiB
C
Raw Normal View History

2013-11-04 23:11:01 +04:00
#include "connected_layer.h"
#include <math.h>
2013-11-04 23:11:01 +04:00
#include <stdlib.h>
#include <string.h>
connected_layer make_connected_layer(int inputs, int outputs, ACTIVATOR_TYPE activator)
2013-11-04 23:11:01 +04:00
{
int i;
connected_layer layer;
layer.inputs = inputs;
layer.outputs = outputs;
layer.output = calloc(outputs, sizeof(double*));
layer.weight_updates = calloc(inputs*outputs, sizeof(double));
layer.weights = calloc(inputs*outputs, sizeof(double));
for(i = 0; i < inputs*outputs; ++i)
layer.weights[i] = .5 - (double)rand()/RAND_MAX;
layer.bias_updates = calloc(outputs, sizeof(double));
layer.biases = calloc(outputs, sizeof(double));
for(i = 0; i < outputs; ++i)
layer.biases[i] = (double)rand()/RAND_MAX;
if(activator == SIGMOID){
layer.activation = sigmoid_activation;
layer.gradient = sigmoid_gradient;
}else if(activator == RELU){
layer.activation = relu_activation;
layer.gradient = relu_gradient;
}else if(activator == IDENTITY){
layer.activation = identity_activation;
layer.gradient = identity_gradient;
}
2013-11-04 23:11:01 +04:00
return layer;
}
void run_connected_layer(double *input, connected_layer layer)
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.output[i] = layer.biases[i];
for(j = 0; j < layer.inputs; ++j){
layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
2013-11-04 23:11:01 +04:00
}
layer.output[i] = layer.activation(layer.output[i]);
2013-11-04 23:11:01 +04:00
}
}
void learn_connected_layer(double *input, connected_layer layer)
2013-11-04 23:11:01 +04:00
{
calculate_update_connected_layer(input, layer);
backpropagate_connected_layer(input, layer);
}
2013-11-04 23:11:01 +04:00
void update_connected_layer(connected_layer layer, double step)
{
int i,j;
2013-11-04 23:11:01 +04:00
for(i = 0; i < layer.outputs; ++i){
layer.biases[i] += step*layer.bias_updates[i];
2013-11-04 23:11:01 +04:00
for(j = 0; j < layer.inputs; ++j){
int index = i*layer.inputs+j;
layer.weights[index] += step*layer.weight_updates[index];
2013-11-04 23:11:01 +04:00
}
}
memset(layer.bias_updates, 0, layer.outputs*sizeof(double));
memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(double));
2013-11-04 23:11:01 +04:00
}
void calculate_update_connected_layer(double *input, connected_layer layer)
2013-11-04 23:11:01 +04:00
{
int i, j;
for(i = 0; i < layer.outputs; ++i){
layer.bias_updates[i] += layer.output[i];
for(j = 0; j < layer.inputs; ++j){
layer.weight_updates[i*layer.inputs + j] += layer.output[i]*input[j];
2013-11-04 23:11:01 +04:00
}
}
}
void backpropagate_connected_layer(double *input, connected_layer layer)
2013-11-04 23:11:01 +04:00
{
int i, j;
for(j = 0; j < layer.inputs; ++j){
double grad = layer.gradient(input[j]);
input[j] = 0;
for(i = 0; i < layer.outputs; ++i){
input[j] += layer.output[i]*layer.weights[i*layer.inputs + j];
2013-11-04 23:11:01 +04:00
}
input[j] *= grad;
2013-11-04 23:11:01 +04:00
}
}