2013-11-04 23:11:01 +04:00
|
|
|
#include "network.h"
|
|
|
|
#include "image.h"
|
|
|
|
|
|
|
|
#include "connected_layer.h"
|
|
|
|
#include "convolutional_layer.h"
|
|
|
|
#include "maxpool_layer.h"
|
|
|
|
|
|
|
|
void run_network(image input, network net)
|
|
|
|
{
|
|
|
|
int i;
|
2013-11-06 22:37:37 +04:00
|
|
|
double *input_d = input.data;
|
2013-11-04 23:11:01 +04:00
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
run_convolutional_layer(input, layer);
|
|
|
|
input = layer.output;
|
|
|
|
input_d = layer.output.data;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
run_connected_layer(input_d, layer);
|
|
|
|
input_d = layer.output;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
run_maxpool_layer(input, layer);
|
|
|
|
input = layer.output;
|
|
|
|
input_d = layer.output.data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-06 22:37:37 +04:00
|
|
|
void update_network(network net, double step)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.n; ++i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
update_convolutional_layer(layer, step);
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
update_connected_layer(layer, step);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void learn_network(image input, network net)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
image prev;
|
|
|
|
double *prev_p;
|
|
|
|
for(i = net.n-1; i >= 0; --i){
|
|
|
|
if(i == 0){
|
|
|
|
prev = input;
|
|
|
|
prev_p = prev.data;
|
|
|
|
} else if(net.types[i-1] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i-1];
|
|
|
|
prev = layer.output;
|
|
|
|
prev_p = prev.data;
|
|
|
|
} else if(net.types[i-1] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i-1];
|
|
|
|
prev = layer.output;
|
|
|
|
prev_p = prev.data;
|
|
|
|
} else if(net.types[i-1] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i-1];
|
|
|
|
prev_p = layer.output;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
learn_convolutional_layer(prev, layer);
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
//maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
learn_connected_layer(prev_p, layer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double *get_network_output(network net)
|
|
|
|
{
|
|
|
|
int i = net.n-1;
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.output.data;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.output.data;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == CONNECTED){
|
|
|
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
2013-11-04 23:11:01 +04:00
|
|
|
image get_network_image(network net)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for(i = net.n-1; i >= 0; --i){
|
|
|
|
if(net.types[i] == CONVOLUTIONAL){
|
|
|
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
}
|
|
|
|
else if(net.types[i] == MAXPOOL){
|
|
|
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
|
|
|
return layer.output;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return make_image(1,1,1);
|
|
|
|
}
|
|
|
|
|