mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
170 lines
4.9 KiB
C
170 lines
4.9 KiB
C
|
#include "network.h"
|
||
|
#include "cost_layer.h"
|
||
|
#include "utils.h"
|
||
|
#include "parser.h"
|
||
|
|
||
|
#ifdef OPENCV
|
||
|
#include "opencv2/highgui/highgui_c.h"
|
||
|
#endif
|
||
|
|
||
|
void extract_voxel(char *lfile, char *rfile, char *prefix)
|
||
|
{
|
||
|
int w = 1920;
|
||
|
int h = 1080;
|
||
|
#ifdef OPENCV
|
||
|
int shift = 0;
|
||
|
int count = 0;
|
||
|
CvCapture *lcap = cvCaptureFromFile(lfile);
|
||
|
CvCapture *rcap = cvCaptureFromFile(rfile);
|
||
|
while(1){
|
||
|
image l = get_image_from_stream(lcap);
|
||
|
image r = get_image_from_stream(rcap);
|
||
|
if(!l.w || !r.w) break;
|
||
|
if(count%100 == 0) {
|
||
|
shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
|
||
|
printf("%d\n", shift);
|
||
|
}
|
||
|
image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
|
||
|
image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s_%05d_l", prefix, count);
|
||
|
save_image(ls, buff);
|
||
|
sprintf(buff, "%s_%05d_r", prefix, count);
|
||
|
save_image(rs, buff);
|
||
|
free_image(l);
|
||
|
free_image(r);
|
||
|
free_image(ls);
|
||
|
free_image(rs);
|
||
|
++count;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
printf("need OpenCV for extraction\n");
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void train_voxel(char *cfgfile, char *weightfile)
|
||
|
{
|
||
|
char *train_images = "/data/imagenet/imagenet1k.train.list";
|
||
|
char *backup_directory = "/home/pjreddie/backup/";
|
||
|
srand(time(0));
|
||
|
data_seed = time(0);
|
||
|
char *base = basecfg(cfgfile);
|
||
|
printf("%s\n", base);
|
||
|
float avg_loss = -1;
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||
|
int imgs = net.batch*net.subdivisions;
|
||
|
int i = *net.seen/imgs;
|
||
|
data train, buffer;
|
||
|
|
||
|
|
||
|
list *plist = get_paths(train_images);
|
||
|
//int N = plist->size;
|
||
|
char **paths = (char **)list_to_array(plist);
|
||
|
|
||
|
load_args args = {0};
|
||
|
args.w = net.w;
|
||
|
args.h = net.h;
|
||
|
args.scale = 4;
|
||
|
args.paths = paths;
|
||
|
args.n = imgs;
|
||
|
args.m = plist->size;
|
||
|
args.d = &buffer;
|
||
|
args.type = SUPER_DATA;
|
||
|
|
||
|
pthread_t load_thread = load_data_in_thread(args);
|
||
|
clock_t time;
|
||
|
//while(i*imgs < N*120){
|
||
|
while(get_current_batch(net) < net.max_batches){
|
||
|
i += 1;
|
||
|
time=clock();
|
||
|
pthread_join(load_thread, 0);
|
||
|
train = buffer;
|
||
|
load_thread = load_data_in_thread(args);
|
||
|
|
||
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
||
|
|
||
|
time=clock();
|
||
|
float loss = train_network(net, train);
|
||
|
if (avg_loss < 0) avg_loss = loss;
|
||
|
avg_loss = avg_loss*.9 + loss*.1;
|
||
|
|
||
|
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||
|
if(i%1000==0){
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
if(i%100==0){
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
free_data(train);
|
||
|
}
|
||
|
char buff[256];
|
||
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
||
|
save_weights(net, buff);
|
||
|
}
|
||
|
|
||
|
void test_voxel(char *cfgfile, char *weightfile, char *filename)
|
||
|
{
|
||
|
network net = parse_network_cfg(cfgfile);
|
||
|
if(weightfile){
|
||
|
load_weights(&net, weightfile);
|
||
|
}
|
||
|
set_batch_network(&net, 1);
|
||
|
srand(2222222);
|
||
|
|
||
|
clock_t time;
|
||
|
char buff[256];
|
||
|
char *input = buff;
|
||
|
while(1){
|
||
|
if(filename){
|
||
|
strncpy(input, filename, 256);
|
||
|
}else{
|
||
|
printf("Enter Image Path: ");
|
||
|
fflush(stdout);
|
||
|
input = fgets(input, 256, stdin);
|
||
|
if(!input) return;
|
||
|
strtok(input, "\n");
|
||
|
}
|
||
|
image im = load_image_color(input, 0, 0);
|
||
|
resize_network(&net, im.w, im.h);
|
||
|
printf("%d %d\n", im.w, im.h);
|
||
|
|
||
|
float *X = im.data;
|
||
|
time=clock();
|
||
|
network_predict(net, X);
|
||
|
image out = get_network_image(net);
|
||
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||
|
save_image(out, "out");
|
||
|
|
||
|
free_image(im);
|
||
|
if (filename) break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void run_voxel(int argc, char **argv)
|
||
|
{
|
||
|
if(argc < 4){
|
||
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
char *cfg = argv[3];
|
||
|
char *weights = (argc > 4) ? argv[4] : 0;
|
||
|
char *filename = (argc > 5) ? argv[5] : 0;
|
||
|
if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
|
||
|
else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
|
||
|
else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
|
||
|
/*
|
||
|
else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
|
||
|
*/
|
||
|
}
|