2017-10-17 22:44:17 +03:00
|
|
|
#include "darknet.h"
|
|
|
|
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <assert.h>
|
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
void extend_data_truth(data *d, int n, float val)
|
2017-10-17 22:44:17 +03:00
|
|
|
{
|
2017-11-08 03:10:33 +03:00
|
|
|
int i, j;
|
|
|
|
for(i = 0; i < d->y.rows; ++i){
|
|
|
|
d->y.vals[i] = realloc(d->y.vals[i], (d->y.cols+n)*sizeof(float));
|
|
|
|
for(j = 0; j < n; ++j){
|
|
|
|
d->y.vals[i][d->y.cols + j] = val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
d->y.cols += n;
|
|
|
|
}
|
|
|
|
|
|
|
|
matrix network_loss_data(network *net, data test)
|
|
|
|
{
|
|
|
|
int i,b;
|
|
|
|
int k = 1;
|
|
|
|
matrix pred = make_matrix(test.X.rows, k);
|
|
|
|
float *X = calloc(net->batch*test.X.cols, sizeof(float));
|
|
|
|
float *y = calloc(net->batch*test.y.cols, sizeof(float));
|
|
|
|
for(i = 0; i < test.X.rows; i += net->batch){
|
|
|
|
for(b = 0; b < net->batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
|
|
|
memcpy(y+b*test.y.cols, test.y.vals[i+b], test.y.cols*sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
network orig = *net;
|
|
|
|
net->input = X;
|
|
|
|
net->truth = y;
|
|
|
|
net->train = 0;
|
|
|
|
net->delta = 0;
|
|
|
|
forward_network(net);
|
|
|
|
*net = orig;
|
|
|
|
|
|
|
|
float *delta = net->layers[net->n-1].output;
|
|
|
|
for(b = 0; b < net->batch; ++b){
|
|
|
|
if(i+b == test.X.rows) break;
|
|
|
|
int t = max_index(y + b*test.y.cols, 1000);
|
|
|
|
float err = sum_array(delta + b*net->outputs, net->outputs);
|
|
|
|
pred.vals[i+b][0] = -err;
|
|
|
|
//pred.vals[i+b][0] = 1-delta[b*net->outputs + t];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
free(X);
|
|
|
|
free(y);
|
|
|
|
return pred;
|
|
|
|
}
|
|
|
|
|
|
|
|
void train_attention(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
|
|
|
{
|
|
|
|
int i, j;
|
2017-10-17 22:44:17 +03:00
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
float avg_cls_loss = -1;
|
|
|
|
float avg_att_loss = -1;
|
2017-10-17 22:44:17 +03:00
|
|
|
char *base = basecfg(cfgfile);
|
|
|
|
printf("%s\n", base);
|
|
|
|
printf("%d\n", ngpus);
|
2017-11-08 03:10:33 +03:00
|
|
|
network **nets = calloc(ngpus, sizeof(network*));
|
2017-10-17 22:44:17 +03:00
|
|
|
|
|
|
|
srand(time(0));
|
|
|
|
int seed = rand();
|
|
|
|
for(i = 0; i < ngpus; ++i){
|
|
|
|
srand(seed);
|
|
|
|
#ifdef GPU
|
|
|
|
cuda_set_device(gpus[i]);
|
|
|
|
#endif
|
2017-11-08 03:10:33 +03:00
|
|
|
nets[i] = load_network(cfgfile, weightfile, clear);
|
|
|
|
nets[i]->learning_rate *= ngpus;
|
2017-10-17 22:44:17 +03:00
|
|
|
}
|
|
|
|
srand(time(0));
|
2017-11-08 03:10:33 +03:00
|
|
|
network *net = nets[0];
|
2017-10-17 22:44:17 +03:00
|
|
|
|
|
|
|
int imgs = net->batch * net->subdivisions * ngpus;
|
|
|
|
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
|
|
|
|
list *options = read_data_cfg(datacfg);
|
|
|
|
|
|
|
|
char *backup_directory = option_find_str(options, "backup", "/backup/");
|
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
|
|
|
char *train_list = option_find_str(options, "train", "data/train.list");
|
|
|
|
int classes = option_find_int(options, "classes", 2);
|
|
|
|
|
|
|
|
char **labels = get_labels(label_list);
|
|
|
|
list *plist = get_paths(train_list);
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
printf("%d\n", plist->size);
|
|
|
|
int N = plist->size;
|
|
|
|
double time;
|
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
int divs=3;
|
|
|
|
int size=2;
|
|
|
|
|
2017-10-17 22:44:17 +03:00
|
|
|
load_args args = {0};
|
2017-11-08 03:10:33 +03:00
|
|
|
args.w = divs*net->w/size;
|
|
|
|
args.h = divs*net->h/size;
|
|
|
|
args.size = divs*net->w/size;
|
2017-10-17 22:44:17 +03:00
|
|
|
args.threads = 32;
|
|
|
|
args.hierarchy = net->hierarchy;
|
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
args.min = net->min_ratio*args.w;
|
|
|
|
args.max = net->max_ratio*args.w;
|
2017-10-17 22:44:17 +03:00
|
|
|
args.angle = net->angle;
|
|
|
|
args.aspect = net->aspect;
|
|
|
|
args.exposure = net->exposure;
|
|
|
|
args.saturation = net->saturation;
|
|
|
|
args.hue = net->hue;
|
|
|
|
|
|
|
|
args.paths = paths;
|
|
|
|
args.classes = classes;
|
|
|
|
args.n = imgs;
|
|
|
|
args.m = N;
|
|
|
|
args.labels = labels;
|
|
|
|
args.type = CLASSIFICATION_DATA;
|
|
|
|
|
|
|
|
data train;
|
|
|
|
data buffer;
|
|
|
|
pthread_t load_thread;
|
|
|
|
args.d = &buffer;
|
|
|
|
load_thread = load_data(args);
|
|
|
|
|
|
|
|
int epoch = (*net->seen)/N;
|
|
|
|
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
|
|
|
|
time = what_time_is_it_now();
|
|
|
|
|
|
|
|
pthread_join(load_thread, 0);
|
|
|
|
train = buffer;
|
|
|
|
load_thread = load_data(args);
|
|
|
|
data resized = resize_data(train, net->w, net->h);
|
2017-11-08 03:10:33 +03:00
|
|
|
extend_data_truth(&resized, divs*divs, 0);
|
|
|
|
data *tiles = tile_data(train, divs, size);
|
2017-10-17 22:44:17 +03:00
|
|
|
|
|
|
|
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
|
|
|
|
time = what_time_is_it_now();
|
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
float aloss = 0;
|
|
|
|
float closs = 0;
|
|
|
|
int z;
|
|
|
|
for (i = 0; i < divs*divs/ngpus; ++i) {
|
|
|
|
#pragma omp parallel for
|
|
|
|
for(j = 0; j < ngpus; ++j){
|
|
|
|
int index = i*ngpus + j;
|
|
|
|
extend_data_truth(tiles+index, divs*divs, SECRET_NUM);
|
|
|
|
matrix deltas = network_loss_data(nets[j], tiles[index]);
|
|
|
|
for(z = 0; z < resized.y.rows; ++z){
|
|
|
|
resized.y.vals[z][train.y.cols + index] = deltas.vals[z][0];
|
|
|
|
}
|
|
|
|
free_matrix(deltas);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
int *inds = calloc(resized.y.rows, sizeof(int));
|
|
|
|
for(z = 0; z < resized.y.rows; ++z){
|
|
|
|
int index = max_index(resized.y.vals[z] + train.y.cols, divs*divs);
|
|
|
|
inds[z] = index;
|
|
|
|
for(i = 0; i < divs*divs; ++i){
|
|
|
|
resized.y.vals[z][train.y.cols + i] = (i == index)? 1 : 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
data best = select_data(tiles, inds);
|
|
|
|
free(inds);
|
|
|
|
#ifdef GPU
|
|
|
|
if (ngpus == 1) {
|
|
|
|
closs = train_network(net, best);
|
|
|
|
} else {
|
|
|
|
closs = train_networks(nets, ngpus, best, 4);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
for (i = 0; i < divs*divs; ++i) {
|
|
|
|
printf("%.2f ", resized.y.vals[0][train.y.cols + i]);
|
|
|
|
if((i+1)%divs == 0) printf("\n");
|
|
|
|
free_data(tiles[i]);
|
|
|
|
}
|
|
|
|
free_data(best);
|
|
|
|
printf("\n");
|
|
|
|
image im = float_to_image(64,64,3,resized.X.vals[0]);
|
|
|
|
//show_image(im, "orig");
|
|
|
|
//cvWaitKey(100);
|
|
|
|
/*
|
|
|
|
image im1 = float_to_image(64,64,3,tiles[i].X.vals[0]);
|
|
|
|
image im2 = float_to_image(64,64,3,resized.X.vals[0]);
|
|
|
|
show_image(im1, "tile");
|
|
|
|
show_image(im2, "res");
|
|
|
|
*/
|
2017-10-17 22:44:17 +03:00
|
|
|
#ifdef GPU
|
2017-11-08 03:10:33 +03:00
|
|
|
if (ngpus == 1) {
|
|
|
|
aloss = train_network(net, resized);
|
2017-10-17 22:44:17 +03:00
|
|
|
} else {
|
2017-11-08 03:10:33 +03:00
|
|
|
aloss = train_networks(nets, ngpus, resized, 4);
|
2017-10-17 22:44:17 +03:00
|
|
|
}
|
|
|
|
#endif
|
2017-11-08 03:10:33 +03:00
|
|
|
for(i = 0; i < divs*divs; ++i){
|
|
|
|
printf("%f ", nets[0]->output[1000 + i]);
|
|
|
|
if ((i+1) % divs == 0) printf("\n");
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
|
2017-10-17 22:44:17 +03:00
|
|
|
free_data(resized);
|
|
|
|
free_data(train);
|
2017-11-08 03:10:33 +03:00
|
|
|
if(avg_cls_loss == -1) avg_cls_loss = closs;
|
|
|
|
if(avg_att_loss == -1) avg_att_loss = aloss;
|
|
|
|
avg_cls_loss = avg_cls_loss*.9 + closs*.1;
|
|
|
|
avg_att_loss = avg_att_loss*.9 + aloss*.1;
|
|
|
|
|
|
|
|
printf("%ld, %.3f: Att: %f, %f avg, Class: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, aloss, avg_att_loss, closs, avg_cls_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
|
2017-10-17 22:44:17 +03:00
|
|
|
if(*net->seen/N > epoch){
|
|
|
|
epoch = *net->seen/N;
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
if(get_current_batch(net)%1000 == 0){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s.backup",backup_directory,base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s.weights", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
pthread_join(load_thread, 0);
|
|
|
|
|
|
|
|
free_network(net);
|
|
|
|
free_ptrs((void**)labels, classes);
|
|
|
|
free_ptrs((void**)paths, plist->size);
|
|
|
|
free_list(plist);
|
|
|
|
free(base);
|
|
|
|
}
|
|
|
|
|
|
|
|
void validate_attention_single(char *datacfg, char *filename, char *weightfile)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
network *net = load_network(filename, weightfile, 0);
|
|
|
|
set_batch_network(net, 1);
|
|
|
|
srand(time(0));
|
|
|
|
|
|
|
|
list *options = read_data_cfg(datacfg);
|
|
|
|
|
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
|
|
|
char *leaf_list = option_find_str(options, "leaves", 0);
|
|
|
|
if(leaf_list) change_leaves(net->hierarchy, leaf_list);
|
|
|
|
char *valid_list = option_find_str(options, "valid", "data/train.list");
|
|
|
|
int classes = option_find_int(options, "classes", 2);
|
|
|
|
int topk = option_find_int(options, "top", 1);
|
|
|
|
|
|
|
|
char **labels = get_labels(label_list);
|
|
|
|
list *plist = get_paths(valid_list);
|
|
|
|
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
int m = plist->size;
|
|
|
|
free_list(plist);
|
|
|
|
|
|
|
|
float avg_acc = 0;
|
|
|
|
float avg_topk = 0;
|
|
|
|
int *indexes = calloc(topk, sizeof(int));
|
2017-11-08 03:10:33 +03:00
|
|
|
int divs = 4;
|
|
|
|
int size = 2;
|
|
|
|
int extra = 0;
|
|
|
|
float *avgs = calloc(classes, sizeof(float));
|
|
|
|
int *inds = calloc(divs*divs, sizeof(int));
|
2017-10-17 22:44:17 +03:00
|
|
|
|
|
|
|
for(i = 0; i < m; ++i){
|
|
|
|
int class = -1;
|
|
|
|
char *path = paths[i];
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
if(strstr(path, labels[j])){
|
|
|
|
class = j;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
image im = load_image_color(paths[i], 0, 0);
|
2017-11-08 03:10:33 +03:00
|
|
|
image resized = resize_min(im, net->w*divs/size);
|
|
|
|
image crop = crop_image(resized, (resized.w - net->w*divs/size)/2, (resized.h - net->h*divs/size)/2, net->w*divs/size, net->h*divs/size);
|
|
|
|
image rcrop = resize_image(crop, net->w, net->h);
|
2017-10-17 22:44:17 +03:00
|
|
|
//show_image(im, "orig");
|
|
|
|
//show_image(crop, "cropped");
|
|
|
|
//cvWaitKey(0);
|
2017-11-08 03:10:33 +03:00
|
|
|
float *pred = network_predict(net, rcrop.data);
|
|
|
|
//pred[classes + 56] = 0;
|
|
|
|
for(j = 0; j < divs*divs; ++j){
|
|
|
|
printf("%.2f ", pred[classes + j]);
|
|
|
|
if((j+1)%divs == 0) printf("\n");
|
|
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
copy_cpu(classes, pred, 1, avgs, 1);
|
|
|
|
top_k(pred + classes, divs*divs, divs*divs, inds);
|
|
|
|
show_image(crop, "crop");
|
|
|
|
for(j = 0; j < extra; ++j){
|
|
|
|
int index = inds[j];
|
|
|
|
int row = index / divs;
|
|
|
|
int col = index % divs;
|
|
|
|
int y = row * crop.h / divs - (net->h - crop.h/divs)/2;
|
|
|
|
int x = col * crop.w / divs - (net->w - crop.w/divs)/2;
|
|
|
|
printf("%d %d %d %d\n", row, col, y, x);
|
|
|
|
image tile = crop_image(crop, x, y, net->w, net->h);
|
|
|
|
float *pred = network_predict(net, tile.data);
|
|
|
|
axpy_cpu(classes, 1., pred, 1, avgs, 1);
|
|
|
|
show_image(tile, "tile");
|
2017-11-08 03:12:00 +03:00
|
|
|
//cvWaitKey(10);
|
2017-11-08 03:10:33 +03:00
|
|
|
}
|
2017-10-17 22:44:17 +03:00
|
|
|
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
|
|
|
|
|
2017-11-08 03:10:33 +03:00
|
|
|
if(rcrop.data != resized.data) free_image(rcrop);
|
2017-10-17 22:44:17 +03:00
|
|
|
if(resized.data != im.data) free_image(resized);
|
|
|
|
free_image(im);
|
|
|
|
free_image(crop);
|
|
|
|
top_k(pred, classes, topk, indexes);
|
|
|
|
|
|
|
|
if(indexes[0] == class) avg_acc += 1;
|
|
|
|
for(j = 0; j < topk; ++j){
|
|
|
|
if(indexes[j] == class) avg_topk += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void validate_attention_multi(char *datacfg, char *filename, char *weightfile)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
network *net = load_network(filename, weightfile, 0);
|
|
|
|
set_batch_network(net, 1);
|
|
|
|
srand(time(0));
|
|
|
|
|
|
|
|
list *options = read_data_cfg(datacfg);
|
|
|
|
|
|
|
|
char *label_list = option_find_str(options, "labels", "data/labels.list");
|
|
|
|
char *valid_list = option_find_str(options, "valid", "data/train.list");
|
|
|
|
int classes = option_find_int(options, "classes", 2);
|
|
|
|
int topk = option_find_int(options, "top", 1);
|
|
|
|
|
|
|
|
char **labels = get_labels(label_list);
|
|
|
|
list *plist = get_paths(valid_list);
|
|
|
|
int scales[] = {224, 288, 320, 352, 384};
|
|
|
|
int nscales = sizeof(scales)/sizeof(scales[0]);
|
|
|
|
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
int m = plist->size;
|
|
|
|
free_list(plist);
|
|
|
|
|
|
|
|
float avg_acc = 0;
|
|
|
|
float avg_topk = 0;
|
|
|
|
int *indexes = calloc(topk, sizeof(int));
|
|
|
|
|
|
|
|
for(i = 0; i < m; ++i){
|
|
|
|
int class = -1;
|
|
|
|
char *path = paths[i];
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
if(strstr(path, labels[j])){
|
|
|
|
class = j;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float *pred = calloc(classes, sizeof(float));
|
|
|
|
image im = load_image_color(paths[i], 0, 0);
|
|
|
|
for(j = 0; j < nscales; ++j){
|
|
|
|
image r = resize_min(im, scales[j]);
|
|
|
|
resize_network(net, r.w, r.h);
|
|
|
|
float *p = network_predict(net, r.data);
|
|
|
|
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1);
|
|
|
|
axpy_cpu(classes, 1, p, 1, pred, 1);
|
|
|
|
flip_image(r);
|
|
|
|
p = network_predict(net, r.data);
|
|
|
|
axpy_cpu(classes, 1, p, 1, pred, 1);
|
|
|
|
if(r.data != im.data) free_image(r);
|
|
|
|
}
|
|
|
|
free_image(im);
|
|
|
|
top_k(pred, classes, topk, indexes);
|
|
|
|
free(pred);
|
|
|
|
if(indexes[0] == class) avg_acc += 1;
|
|
|
|
for(j = 0; j < topk; ++j){
|
|
|
|
if(indexes[j] == class) avg_topk += 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void predict_attention(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
|
|
|
|
{
|
|
|
|
network *net = load_network(cfgfile, weightfile, 0);
|
|
|
|
set_batch_network(net, 1);
|
|
|
|
srand(2222222);
|
|
|
|
|
|
|
|
list *options = read_data_cfg(datacfg);
|
|
|
|
|
|
|
|
char *name_list = option_find_str(options, "names", 0);
|
|
|
|
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
|
|
|
|
if(top == 0) top = option_find_int(options, "top", 1);
|
|
|
|
|
|
|
|
int i = 0;
|
|
|
|
char **names = get_labels(name_list);
|
|
|
|
clock_t time;
|
|
|
|
int *indexes = calloc(top, sizeof(int));
|
|
|
|
char buff[256];
|
|
|
|
char *input = buff;
|
|
|
|
while(1){
|
|
|
|
if(filename){
|
|
|
|
strncpy(input, filename, 256);
|
|
|
|
}else{
|
|
|
|
printf("Enter Image Path: ");
|
|
|
|
fflush(stdout);
|
|
|
|
input = fgets(input, 256, stdin);
|
|
|
|
if(!input) return;
|
|
|
|
strtok(input, "\n");
|
|
|
|
}
|
|
|
|
image im = load_image_color(input, 0, 0);
|
|
|
|
image r = letterbox_image(im, net->w, net->h);
|
|
|
|
//resize_network(&net, r.w, r.h);
|
|
|
|
//printf("%d %d\n", r.w, r.h);
|
|
|
|
|
|
|
|
float *X = r.data;
|
|
|
|
time=clock();
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
|
|
|
|
top_k(predictions, net->outputs, top, indexes);
|
|
|
|
fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
|
|
for(i = 0; i < top; ++i){
|
|
|
|
int index = indexes[i];
|
|
|
|
//if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root");
|
|
|
|
//else printf("%s: %f\n",names[index], predictions[index]);
|
|
|
|
printf("%5.2f%%: %s\n", predictions[index]*100, names[index]);
|
|
|
|
}
|
|
|
|
if(r.data != im.data) free_image(r);
|
|
|
|
free_image(im);
|
|
|
|
if (filename) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void run_attention(int argc, char **argv)
|
|
|
|
{
|
|
|
|
if(argc < 4){
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
|
|
|
|
int ngpus;
|
|
|
|
int *gpus = read_intlist(gpu_list, &ngpus, gpu_index);
|
|
|
|
|
|
|
|
|
|
|
|
int top = find_int_arg(argc, argv, "-t", 0);
|
|
|
|
int clear = find_arg(argc, argv, "-clear");
|
|
|
|
char *data = argv[3];
|
|
|
|
char *cfg = argv[4];
|
|
|
|
char *weights = (argc > 5) ? argv[5] : 0;
|
|
|
|
char *filename = (argc > 6) ? argv[6]: 0;
|
|
|
|
char *layer_s = (argc > 7) ? argv[7]: 0;
|
|
|
|
if(0==strcmp(argv[2], "predict")) predict_attention(data, cfg, weights, filename, top);
|
2017-11-08 03:10:33 +03:00
|
|
|
else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, gpus, ngpus, clear);
|
2017-10-17 22:44:17 +03:00
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_attention_single(data, cfg, weights);
|
|
|
|
else if(0==strcmp(argv[2], "validmulti")) validate_attention_multi(data, cfg, weights);
|
|
|
|
}
|
|
|
|
|
|
|
|
|