darknet/src/coco.c

554 lines
19 KiB
C
Raw Normal View History

#include <stdio.h>
2015-07-31 02:19:14 +03:00
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
2015-08-14 18:45:32 +03:00
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
2015-07-31 02:19:14 +03:00
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
2015-08-25 04:27:42 +03:00
void draw_coco(image im, float *pred, int side, char *label)
2015-07-31 02:19:14 +03:00
{
2015-09-01 21:21:01 +03:00
int classes = 1;
2015-08-25 04:27:42 +03:00
int elems = 4+classes;
2015-07-31 02:19:14 +03:00
int j;
int r, c;
for(r = 0; r < side; ++r){
for(c = 0; c < side; ++c){
j = (r*side + c) * elems;
2015-08-25 04:27:42 +03:00
int class = max_index(pred+j, classes);
if (pred[j+class] > 0.2){
int width = pred[j+class]*5 + 1;
2015-09-01 21:21:01 +03:00
printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
2015-07-31 02:19:14 +03:00
float red = get_color(0,class,classes);
float green = get_color(1,class,classes);
float blue = get_color(2,class,classes);
j += classes;
2015-08-25 04:27:42 +03:00
box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
2015-09-01 21:21:01 +03:00
predict.x = (predict.x+c)/side;
predict.y = (predict.y+r)/side;
2015-08-25 04:27:42 +03:00
2015-09-01 21:21:01 +03:00
draw_bbox(im, predict, width, red, green, blue);
2015-07-31 02:19:14 +03:00
}
}
}
show_image(im, label);
}
void train_coco(char *cfgfile, char *weightfile)
{
2015-09-01 21:21:01 +03:00
//char *train_images = "/home/pjreddie/data/coco/train.txt";
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
2015-07-31 02:19:14 +03:00
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
data_seed = time(0);
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 128;
2015-09-05 03:52:44 +03:00
int i = *net.seen/imgs;
2015-07-31 02:19:14 +03:00
data train, buffer;
2015-09-01 21:21:01 +03:00
layer l = net.layers[net.n - 1];
int side = l.side;
int classes = l.classes;
2015-07-31 02:19:14 +03:00
list *plist = get_paths(train_images);
int N = plist->size;
2015-08-25 04:27:42 +03:00
char **paths = (char **)list_to_array(plist);
2015-07-31 02:19:14 +03:00
2015-08-25 04:27:42 +03:00
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.classes = classes;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
pthread_t load_thread = load_data_in_thread(args);
2015-07-31 02:19:14 +03:00
clock_t time;
while(i*imgs < N*120){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
2015-08-25 04:27:42 +03:00
load_thread = load_data_in_thread(args);
2015-07-31 02:19:14 +03:00
printf("Loaded: %lf seconds\n", sec(clock()-time));
2015-08-25 04:27:42 +03:00
/*
2015-09-01 21:21:01 +03:00
image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
2015-08-25 04:27:42 +03:00
image copy = copy_image(im);
2015-09-01 21:21:01 +03:00
draw_coco(copy, train.y.vals[113], 7, "truth");
2015-08-25 04:27:42 +03:00
cvWaitKey(0);
free_image(copy);
*/
2015-07-31 02:19:14 +03:00
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
2015-09-01 21:21:01 +03:00
if((i-1)*imgs <= N && i*imgs > N){
fprintf(stderr, "First stage done\n");
net.learning_rate *= 10;
2015-07-31 02:19:14 +03:00
char buff[256];
sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
save_weights(net, buff);
2015-09-01 21:21:01 +03:00
}
if((i-1)*imgs <= 80*N && i*imgs > N*80){
fprintf(stderr, "Second stage done.\n");
char buff[256];
sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
save_weights(net, buff);
2015-07-31 02:19:14 +03:00
}
2015-08-02 03:26:53 +03:00
if(i%1000==0){
2015-07-31 02:19:14 +03:00
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
2015-09-01 21:21:01 +03:00
void get_probs(float *predictions, int total, int classes, int inc, float **probs)
{
int i,j;
for (i = 0; i < total; ++i){
int index = i*inc;
float scale = predictions[index];
probs[i][0] = scale;
for(j = 0; j < classes; ++j){
probs[i][j] = scale*predictions[index+j+1];
}
}
}
void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
2015-07-31 02:19:14 +03:00
{
int i,j;
for (i = 0; i < num_boxes*num_boxes; ++i){
2015-09-01 21:21:01 +03:00
for(j = 0; j < n; ++j){
int index = i*n+j;
int offset = index*per_box;
int row = i / num_boxes;
int col = i % num_boxes;
boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
boxes[index].w = predictions[offset + 2];
boxes[index].h = predictions[offset + 3];
}
}
}
void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
{
int i,j;
int per_box = 4+classes;
for (i = 0; i < num_boxes*num_boxes*num; ++i){
int offset = i*per_box;
2015-07-31 02:19:14 +03:00
for(j = 0; j < classes; ++j){
2015-09-01 21:21:01 +03:00
float prob = predictions[offset+j];
2015-07-31 02:19:14 +03:00
probs[i][j] = (prob > thresh) ? prob : 0;
}
int row = i / num_boxes;
int col = i % num_boxes;
offset += classes;
2015-09-01 21:21:01 +03:00
boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
boxes[i].w = predictions[offset + 2];
boxes[i].h = predictions[offset + 3];
2015-07-31 02:19:14 +03:00
}
}
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
2015-07-31 02:19:14 +03:00
{
int i, j;
for(i = 0; i < num_boxes*num_boxes; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
2015-07-31 02:19:14 +03:00
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
2015-07-31 02:19:14 +03:00
}
}
}
int get_coco_image_id(char *filename)
{
char *p = strrchr(filename, '_');
return atoi(p+1);
}
2015-09-01 21:21:01 +03:00
void validate_recall(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
list *plist = get_paths(val_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n - 1];
int num_boxes = l.side;
int num = l.n;
int classes = l.classes;
int j;
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
int N = plist->size;
int i=0;
int k;
float iou_thresh = .5;
float thresh = .1;
int total = 0;
int correct = 0;
float avg_iou = 0;
2015-09-05 03:52:44 +03:00
int nms = 1;
2015-09-01 21:21:01 +03:00
int proposals = 0;
2015-09-05 03:52:44 +03:00
int save = 1;
2015-09-01 21:21:01 +03:00
for (i = 0; i < N; ++i) {
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image resized = resize_image(orig, net.w, net.h);
float *X = resized.data;
float *predictions = network_predict(net, X);
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < num_boxes*num_boxes*num; ++k){
if(probs[k][0] > thresh){
++proposals;
2015-09-05 03:52:44 +03:00
if(save){
char buff[256];
sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
int w = boxes[k].w * orig.w;
int h = boxes[k].h * orig.h;
image cropped = crop_image(orig, dx, dy, w, h);
image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
save_image_jpg(sized, buff);
#endif
free_image(sized);
free_image(cropped);
sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
char *im_id = basecfg(path);
FILE *fp = fopen(buff, "w");
fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
fclose(fp);
free(im_id);
}
2015-09-01 21:21:01 +03:00
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < num_boxes*num_boxes*num; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
free(truth);
free_image(orig);
free_image(resized);
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
}
}
void extract_boxes(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *val_images = "/home/pjreddie/data/voc/test/train.txt";
list *plist = get_paths(val_images);
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n - 1];
int num_boxes = l.side;
int num = l.n;
int classes = l.classes;
int j;
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
int N = plist->size;
int i=0;
int k;
int count = 0;
2015-09-05 03:52:44 +03:00
float iou_thresh = .3;
2015-09-01 21:21:01 +03:00
for (i = 0; i < N; ++i) {
fprintf(stderr, "%5d %5d\n", i, count);
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image resized = resize_image(orig, net.w, net.h);
float *X = resized.data;
float *predictions = network_predict(net, X);
get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
FILE *label = stdin;
for(k = 0; k < num_boxes*num_boxes*num; ++k){
int overlaps = 0;
for (j = 0; j < num_labels; ++j) {
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float iou = box_iou(boxes[k], t);
if (iou > iou_thresh){
if (!overlaps) {
char buff[256];
2015-09-05 03:52:44 +03:00
sprintf(buff, "/data/extracted/labels/%d.txt", count);
2015-09-01 21:21:01 +03:00
label = fopen(buff, "w");
overlaps = 1;
}
fprintf(label, "%d %f\n", truth[j].id, iou);
}
}
if (overlaps) {
char buff[256];
2015-09-05 03:52:44 +03:00
sprintf(buff, "/data/extracted/imgs/%d", count++);
2015-09-01 21:21:01 +03:00
int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
int w = boxes[k].w * orig.w;
int h = boxes[k].h * orig.h;
image cropped = crop_image(orig, dx, dy, w, h);
image sized = resize_image(cropped, 224, 224);
2015-09-05 03:52:44 +03:00
#ifdef OPENCV
2015-09-01 21:21:01 +03:00
save_image_jpg(sized, buff);
2015-09-05 03:52:44 +03:00
#endif
2015-09-01 21:21:01 +03:00
free_image(sized);
free_image(cropped);
fclose(label);
}
}
free(truth);
free_image(orig);
free_image(resized);
}
}
2015-07-31 02:19:14 +03:00
void validate_coco(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "/home/pjreddie/backup/";
list *plist = get_paths("data/coco_val_5k.list");
2015-07-31 02:19:14 +03:00
char **paths = (char **)list_to_array(plist);
2015-09-01 21:21:01 +03:00
int num_boxes = 9;
int num = 4;
int classes = 1;
2015-07-31 02:19:14 +03:00
int j;
char buff[1024];
snprintf(buff, 1024, "%s/coco_results.json", base);
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
2015-09-01 21:21:01 +03:00
box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
2015-07-31 02:19:14 +03:00
int m = plist->size;
int i=0;
int t;
float thresh = .01;
2015-07-31 02:19:14 +03:00
int nms = 1;
float iou_thresh = .5;
2015-08-25 04:27:42 +03:00
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
2015-07-31 02:19:14 +03:00
int nthreads = 8;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
for(t = 0; t < nthreads; ++t){
2015-08-25 04:27:42 +03:00
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
2015-07-31 02:19:14 +03:00
}
time_t start = time(0);
for(i = nthreads; i < m+nthreads; i += nthreads){
fprintf(stderr, "%d\n", i);
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for(t = 0; t < nthreads && i+t < m; ++t){
2015-08-25 04:27:42 +03:00
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
2015-07-31 02:19:14 +03:00
}
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
char *path = paths[i+t-nthreads];
int image_id = get_coco_image_id(path);
2015-07-31 02:19:14 +03:00
float *X = val_resized[t].data;
float *predictions = network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
2015-09-01 21:21:01 +03:00
convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
2015-07-31 02:19:14 +03:00
if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
2015-07-31 02:19:14 +03:00
free_image(val[t]);
free_image(val_resized[t]);
}
}
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
2015-07-31 02:19:14 +03:00
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void test_coco(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char input[256];
while(1){
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
fgets(input, 256, stdin);
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
2015-08-25 04:27:42 +03:00
draw_coco(im, predictions, 7, "predictions");
2015-07-31 02:19:14 +03:00
free_image(im);
free_image(sized);
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
if (filename) break;
}
}
void run_coco(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
2015-09-01 21:21:01 +03:00
else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
2015-07-31 02:19:14 +03:00
}