2015-08-14 21:45:11 +03:00
|
|
|
#include "network.h"
|
|
|
|
#include "detection_layer.h"
|
|
|
|
#include "cost_layer.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include "parser.h"
|
|
|
|
#include "box.h"
|
|
|
|
|
|
|
|
#ifdef OPENCV
|
|
|
|
#include "opencv2/highgui/highgui_c.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
char *voc_class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
|
|
|
|
|
|
|
void draw_yolo(image im, float *box, int side, int objectness, char *label, float thresh)
|
|
|
|
{
|
|
|
|
int classes = 20;
|
|
|
|
int elems = 4+classes+objectness;
|
|
|
|
int j;
|
|
|
|
int r, c;
|
|
|
|
|
|
|
|
for(r = 0; r < side; ++r){
|
|
|
|
for(c = 0; c < side; ++c){
|
|
|
|
j = (r*side + c) * elems;
|
|
|
|
float scale = 1;
|
|
|
|
if(objectness) scale = 1 - box[j++];
|
|
|
|
int class = max_index(box+j, classes);
|
|
|
|
if(scale * box[j+class] > thresh){
|
|
|
|
int width = sqrt(scale*box[j+class])*5 + 1;
|
|
|
|
printf("%f %s\n", scale * box[j+class], voc_class_names[class]);
|
|
|
|
float red = get_color(0,class,classes);
|
|
|
|
float green = get_color(1,class,classes);
|
|
|
|
float blue = get_color(2,class,classes);
|
|
|
|
|
|
|
|
j += classes;
|
|
|
|
float x = box[j+0];
|
|
|
|
float y = box[j+1];
|
|
|
|
x = (x+c)/side;
|
|
|
|
y = (y+r)/side;
|
|
|
|
float w = box[j+2]; //*maxwidth;
|
|
|
|
float h = box[j+3]; //*maxheight;
|
|
|
|
h = h*h;
|
|
|
|
w = w*w;
|
|
|
|
|
|
|
|
int left = (x-w/2)*im.w;
|
|
|
|
int right = (x+w/2)*im.w;
|
|
|
|
int top = (y-h/2)*im.h;
|
|
|
|
int bot = (y+h/2)*im.h;
|
|
|
|
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
show_image(im, label);
|
|
|
|
}
|
|
|
|
|
|
|
|
void train_yolo(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
char *train_images = "/home/pjreddie/data/voc/test/train.txt";
|
|
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
|
|
srand(time(0));
|
|
|
|
data_seed = time(0);
|
|
|
|
char *base = basecfg(cfgfile);
|
|
|
|
printf("%s\n", base);
|
|
|
|
float avg_loss = -1;
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
detection_layer layer = get_network_detection_layer(net);
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
int imgs = 128;
|
2015-09-05 03:52:44 +03:00
|
|
|
int i = *net.seen/imgs;
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
char **paths;
|
|
|
|
list *plist = get_paths(train_images);
|
|
|
|
int N = plist->size;
|
|
|
|
paths = (char **)list_to_array(plist);
|
|
|
|
|
|
|
|
if(i*imgs > N*80){
|
|
|
|
net.layers[net.n-1].joint = 1;
|
|
|
|
net.layers[net.n-1].objectness = 0;
|
|
|
|
}
|
|
|
|
if(i*imgs > N*120){
|
|
|
|
net.layers[net.n-1].rescore = 1;
|
|
|
|
}
|
|
|
|
data train, buffer;
|
|
|
|
|
|
|
|
int classes = layer.classes;
|
|
|
|
int background = layer.objectness;
|
|
|
|
int side = sqrt(get_detection_layer_locations(layer));
|
|
|
|
|
2015-08-25 04:27:42 +03:00
|
|
|
load_args args = {0};
|
|
|
|
args.w = net.w;
|
|
|
|
args.h = net.h;
|
|
|
|
args.paths = paths;
|
|
|
|
args.n = imgs;
|
|
|
|
args.m = plist->size;
|
|
|
|
args.classes = classes;
|
|
|
|
args.num_boxes = side;
|
|
|
|
args.background = background;
|
|
|
|
args.d = &buffer;
|
|
|
|
args.type = DETECTION_DATA;
|
|
|
|
|
|
|
|
pthread_t load_thread = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
clock_t time;
|
|
|
|
while(i*imgs < N*130){
|
|
|
|
i += 1;
|
|
|
|
time=clock();
|
|
|
|
pthread_join(load_thread, 0);
|
|
|
|
train = buffer;
|
2015-08-25 04:27:42 +03:00
|
|
|
load_thread = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
|
|
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
|
|
|
time=clock();
|
|
|
|
float loss = train_network(net, train);
|
|
|
|
if (avg_loss < 0) avg_loss = loss;
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
|
|
|
|
|
|
printf("%d: %f, %f avg, %lf seconds, %d images, epoch: %f\n", i, loss, avg_loss, sec(clock()-time), i*imgs, ((float)i)*imgs/N);
|
|
|
|
|
|
|
|
if((i-1)*imgs <= N && i*imgs > N){
|
|
|
|
fprintf(stderr, "First stage done\n");
|
|
|
|
net.learning_rate *= 10;
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
if((i-1)*imgs <= 80*N && i*imgs > N*80){
|
|
|
|
fprintf(stderr, "Second stage done.\n");
|
|
|
|
net.learning_rate *= .1;
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
net.layers[net.n-1].joint = 1;
|
|
|
|
net.layers[net.n-1].objectness = 0;
|
|
|
|
background = 0;
|
|
|
|
|
|
|
|
pthread_join(load_thread, 0);
|
|
|
|
free_data(buffer);
|
2015-09-01 21:21:01 +03:00
|
|
|
args.background = background;
|
2015-08-25 04:27:42 +03:00
|
|
|
load_thread = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
if((i-1)*imgs <= 120*N && i*imgs > N*120){
|
|
|
|
fprintf(stderr, "Third stage done.\n");
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
|
|
net.layers[net.n-1].rescore = 1;
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(i%1000==0){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
free_data(train);
|
|
|
|
}
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_rescore.weights", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
void convert_yolo_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
|
|
|
|
{
|
|
|
|
int i,j;
|
|
|
|
int per_box = 4+classes+(background || objectness);
|
|
|
|
for (i = 0; i < num_boxes*num_boxes; ++i){
|
|
|
|
float scale = 1;
|
|
|
|
if(objectness) scale = 1-predictions[i*per_box];
|
|
|
|
int offset = i*per_box+(background||objectness);
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
float prob = scale*predictions[offset+j];
|
|
|
|
probs[i][j] = (prob > thresh) ? prob : 0;
|
|
|
|
}
|
|
|
|
int row = i / num_boxes;
|
|
|
|
int col = i % num_boxes;
|
|
|
|
offset += classes;
|
|
|
|
boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
|
|
|
|
boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
|
|
|
|
boxes[i].w = pow(predictions[offset + 2], 2) * w;
|
|
|
|
boxes[i].h = pow(predictions[offset + 3], 2) * h;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
for(i = 0; i < num_boxes*num_boxes; ++i){
|
|
|
|
float xmin = boxes[i].x - boxes[i].w/2.;
|
|
|
|
float xmax = boxes[i].x + boxes[i].w/2.;
|
|
|
|
float ymin = boxes[i].y - boxes[i].h/2.;
|
|
|
|
float ymax = boxes[i].y + boxes[i].h/2.;
|
|
|
|
|
|
|
|
if (xmin < 0) xmin = 0;
|
|
|
|
if (ymin < 0) ymin = 0;
|
|
|
|
if (xmax > w) xmax = w;
|
|
|
|
if (ymax > h) ymax = h;
|
|
|
|
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
|
|
|
|
xmin, ymin, xmax, ymax);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void validate_yolo(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
detection_layer layer = get_network_detection_layer(net);
|
|
|
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
srand(time(0));
|
|
|
|
|
|
|
|
char *base = "results/comp4_det_test_";
|
|
|
|
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
|
|
|
|
int classes = layer.classes;
|
|
|
|
int objectness = layer.objectness;
|
|
|
|
int background = layer.background;
|
|
|
|
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
|
|
|
|
|
|
|
int j;
|
|
|
|
FILE **fps = calloc(classes, sizeof(FILE *));
|
|
|
|
for(j = 0; j < classes; ++j){
|
|
|
|
char buff[1024];
|
|
|
|
snprintf(buff, 1024, "%s%s.txt", base, voc_class_names[j]);
|
|
|
|
fps[j] = fopen(buff, "w");
|
|
|
|
}
|
|
|
|
box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
|
|
|
|
float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
|
|
|
|
for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
|
|
|
|
|
|
|
|
int m = plist->size;
|
|
|
|
int i=0;
|
|
|
|
int t;
|
|
|
|
|
|
|
|
float thresh = .001;
|
|
|
|
int nms = 1;
|
|
|
|
float iou_thresh = .5;
|
|
|
|
|
|
|
|
int nthreads = 8;
|
|
|
|
image *val = calloc(nthreads, sizeof(image));
|
|
|
|
image *val_resized = calloc(nthreads, sizeof(image));
|
|
|
|
image *buf = calloc(nthreads, sizeof(image));
|
|
|
|
image *buf_resized = calloc(nthreads, sizeof(image));
|
|
|
|
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
|
2015-08-25 04:27:42 +03:00
|
|
|
|
|
|
|
load_args args = {0};
|
|
|
|
args.w = net.w;
|
|
|
|
args.h = net.h;
|
|
|
|
args.type = IMAGE_DATA;
|
|
|
|
|
2015-08-14 21:45:11 +03:00
|
|
|
for(t = 0; t < nthreads; ++t){
|
2015-08-25 04:27:42 +03:00
|
|
|
args.path = paths[i+t];
|
|
|
|
args.im = &buf[t];
|
|
|
|
args.resized = &buf_resized[t];
|
|
|
|
thr[t] = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
time_t start = time(0);
|
|
|
|
for(i = nthreads; i < m+nthreads; i += nthreads){
|
|
|
|
fprintf(stderr, "%d\n", i);
|
|
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
|
|
pthread_join(thr[t], 0);
|
|
|
|
val[t] = buf[t];
|
|
|
|
val_resized[t] = buf_resized[t];
|
|
|
|
}
|
|
|
|
for(t = 0; t < nthreads && i+t < m; ++t){
|
2015-08-25 04:27:42 +03:00
|
|
|
args.path = paths[i+t];
|
|
|
|
args.im = &buf[t];
|
|
|
|
args.resized = &buf_resized[t];
|
|
|
|
thr[t] = load_data_in_thread(args);
|
2015-08-14 21:45:11 +03:00
|
|
|
}
|
|
|
|
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
|
|
|
|
char *path = paths[i+t-nthreads];
|
|
|
|
char *id = basecfg(path);
|
|
|
|
float *X = val_resized[t].data;
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
int w = val[t].w;
|
|
|
|
int h = val[t].h;
|
|
|
|
convert_yolo_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
|
2015-09-01 21:21:01 +03:00
|
|
|
if (nms) do_nms(boxes, probs, num_boxes*num_boxes, classes, iou_thresh);
|
2015-08-14 21:45:11 +03:00
|
|
|
print_yolo_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
|
|
|
|
free(id);
|
|
|
|
free_image(val[t]);
|
|
|
|
free_image(val_resized[t]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
|
|
|
}
|
|
|
|
|
|
|
|
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
|
|
|
|
{
|
|
|
|
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
detection_layer layer = get_network_detection_layer(net);
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
srand(2222222);
|
|
|
|
clock_t time;
|
|
|
|
char input[256];
|
|
|
|
while(1){
|
|
|
|
if(filename){
|
|
|
|
strncpy(input, filename, 256);
|
|
|
|
} else {
|
|
|
|
printf("Enter Image Path: ");
|
|
|
|
fflush(stdout);
|
|
|
|
fgets(input, 256, stdin);
|
|
|
|
strtok(input, "\n");
|
|
|
|
}
|
|
|
|
image im = load_image_color(input,0,0);
|
|
|
|
image sized = resize_image(im, net.w, net.h);
|
|
|
|
float *X = sized.data;
|
|
|
|
time=clock();
|
|
|
|
float *predictions = network_predict(net, X);
|
|
|
|
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
|
|
|
draw_yolo(im, predictions, 7, layer.objectness, "predictions", thresh);
|
|
|
|
free_image(im);
|
|
|
|
free_image(sized);
|
|
|
|
#ifdef OPENCV
|
|
|
|
cvWaitKey(0);
|
|
|
|
cvDestroyAllWindows();
|
|
|
|
#endif
|
|
|
|
if (filename) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void run_yolo(int argc, char **argv)
|
|
|
|
{
|
|
|
|
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
|
|
|
if(argc < 4){
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *cfg = argv[3];
|
|
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
|
|
char *filename = (argc > 5) ? argv[5]: 0;
|
|
|
|
if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
|
|
|
|
else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
|
|
|
|
else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
|
|
|
|
}
|