darknet/src/upsample_layer.c

107 lines
3.2 KiB
C
Raw Normal View History

#include "upsample_layer.h"
#include "cuda.h"
#include "blas.h"
#include <stdio.h>
layer make_upsample_layer(int batch, int w, int h, int c, int stride)
{
layer l = {0};
l.type = UPSAMPLE;
l.batch = batch;
l.w = w;
l.h = h;
l.c = c;
l.out_w = w*stride;
l.out_h = h*stride;
l.out_c = c;
2018-01-17 01:30:00 +03:00
if(stride < 0){
stride = -stride;
l.reverse=1;
l.out_w = w/stride;
l.out_h = h/stride;
}
l.stride = stride;
l.outputs = l.out_w*l.out_h*l.out_c;
l.inputs = l.w*l.h*l.c;
l.delta = calloc(l.outputs*batch, sizeof(float));
l.output = calloc(l.outputs*batch, sizeof(float));;
l.forward = forward_upsample_layer;
l.backward = backward_upsample_layer;
#ifdef GPU
l.forward_gpu = forward_upsample_layer_gpu;
l.backward_gpu = backward_upsample_layer_gpu;
l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch);
l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
#endif
2018-01-17 01:30:00 +03:00
if(l.reverse) fprintf(stderr, "downsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
else fprintf(stderr, "upsample %2dx %4d x%4d x%4d -> %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
return l;
}
void resize_upsample_layer(layer *l, int w, int h)
{
l->w = w;
l->h = h;
l->out_w = w*l->stride;
l->out_h = h*l->stride;
2018-01-17 01:30:00 +03:00
if(l->reverse){
l->out_w = w/l->stride;
l->out_h = h/l->stride;
}
l->outputs = l->out_w*l->out_h*l->out_c;
l->inputs = l->h*l->w*l->c;
l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float));
l->output = realloc(l->output, l->outputs*l->batch*sizeof(float));
#ifdef GPU
cuda_free(l->output_gpu);
cuda_free(l->delta_gpu);
l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
#endif
}
void forward_upsample_layer(const layer l, network net)
{
2018-01-17 01:30:00 +03:00
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
if(l.reverse){
upsample_cpu(l.output, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input);
2018-01-17 01:30:00 +03:00
}else{
upsample_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output);
}
}
void backward_upsample_layer(const layer l, network net)
{
2018-01-17 01:30:00 +03:00
if(l.reverse){
upsample_cpu(l.delta, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, net.delta);
2018-01-17 01:30:00 +03:00
}else{
upsample_cpu(net.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta);
}
}
#ifdef GPU
void forward_upsample_layer_gpu(const layer l, network net)
{
2018-01-17 01:30:00 +03:00
fill_gpu(l.outputs*l.batch, 0, l.output_gpu, 1);
if(l.reverse){
upsample_gpu(l.output_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input_gpu);
2018-01-17 01:30:00 +03:00
}else{
upsample_gpu(net.input_gpu, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output_gpu);
2018-01-17 01:30:00 +03:00
}
}
void backward_upsample_layer_gpu(const layer l, network net)
{
2018-01-17 01:30:00 +03:00
if(l.reverse){
upsample_gpu(l.delta_gpu, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, net.delta_gpu);
2018-01-17 01:30:00 +03:00
}else{
upsample_gpu(net.delta_gpu, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta_gpu);
2018-01-17 01:30:00 +03:00
}
}
#endif