darknet/examples/regressor.c

251 lines
6.8 KiB
C
Raw Normal View History

2017-06-02 06:31:13 +03:00
#include "darknet.h"
#include <sys/time.h>
#include <assert.h>
void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
int i;
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
printf("%d\n", ngpus);
network *nets = calloc(ngpus, sizeof(network));
srand(time(0));
int seed = rand();
for(i = 0; i < ngpus; ++i){
srand(seed);
#ifdef GPU
cuda_set_device(gpus[i]);
#endif
nets[i] = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&nets[i], weightfile);
}
if(clear) *nets[i].seen = 0;
nets[i].learning_rate *= ngpus;
}
srand(time(0));
network net = nets[0];
int imgs = net.batch * net.subdivisions * ngpus;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
list *options = read_data_cfg(datacfg);
char *backup_directory = option_find_str(options, "backup", "/backup/");
char *train_list = option_find_str(options, "train", "data/train.list");
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
clock_t time;
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.threads = 32;
args.min = net.min_crop;
args.max = net.max_crop;
args.angle = net.angle;
args.aspect = net.aspect;
args.exposure = net.exposure;
args.saturation = net.saturation;
args.hue = net.hue;
args.size = net.w;
args.paths = paths;
args.n = imgs;
args.m = N;
args.type = REGRESSION_DATA;
data train;
data buffer;
pthread_t load_thread;
args.d = &buffer;
load_thread = load_data(args);
int epoch = (*net.seen)/N;
while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = 0;
#ifdef GPU
if(ngpus == 1){
loss = train_network(net, train);
} else {
loss = train_networks(nets, ngpus, train, 4);
}
#else
loss = train_network(net, train);
#endif
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
free_data(train);
if(*net.seen/N > epoch){
epoch = *net.seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
if(get_current_batch(net)%100 == 0){
char buff[256];
sprintf(buff, "%s/%s.backup",backup_directory,base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
free_network(net);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
void predict_regressor(char *cfgfile, char *weightfile, char *filename)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
image sized = letterbox_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
printf("Predicted: %f\n", predictions[0]);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
free_image(im);
free_image(sized);
if (filename) break;
}
}
void demo_regressor(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
printf("Regressor Demo\n");
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
srand(2222222);
CvCapture * cap;
if(filename){
cap = cvCaptureFromFile(filename);
}else{
cap = cvCaptureFromCAM(cam_index);
}
if(!cap) error("Couldn't connect to webcam.\n");
cvNamedWindow("Regressor", CV_WINDOW_NORMAL);
cvResizeWindow("Regressor", 512, 512);
float fps = 0;
while(1){
struct timeval tval_before, tval_after, tval_result;
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
image in_s = letterbox_image(in, net.w, net.h);
show_image(in, "Regressor");
float *predictions = network_predict(net, in_s.data);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
printf("People: %f\n", predictions[0]);
free_image(in_s);
free_image(in);
cvWaitKey(10);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
fps = .9*fps + .1*curr;
}
#endif
}
void run_regressor(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
int *gpus = 0;
int gpu = 0;
int ngpus = 0;
if(gpu_list){
printf("%s\n", gpu_list);
int len = strlen(gpu_list);
ngpus = 1;
int i;
for(i = 0; i < len; ++i){
if (gpu_list[i] == ',') ++ngpus;
}
gpus = calloc(ngpus, sizeof(int));
for(i = 0; i < ngpus; ++i){
gpus[i] = atoi(gpu_list);
gpu_list = strchr(gpu_list, ',')+1;
}
} else {
gpu = gpu_index;
gpus = &gpu;
ngpus = 1;
}
int cam_index = find_int_arg(argc, argv, "-c", 0);
int clear = find_arg(argc, argv, "-clear");
char *data = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
if(0==strcmp(argv[2], "test")) predict_regressor(data, cfg, weights);
else if(0==strcmp(argv[2], "train")) train_regressor(data, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "demo")) demo_regressor(data, cfg, weights, cam_index, filename);
}