2017-06-02 06:31:13 +03:00
|
|
|
#include "darknet.h"
|
2016-03-01 00:54:12 +03:00
|
|
|
|
|
|
|
#ifdef OPENCV
|
2016-09-25 09:12:54 +03:00
|
|
|
image get_image_from_stream(CvCapture *cap);
|
|
|
|
image ipl_to_image(IplImage* src);
|
2016-03-01 00:54:12 +03:00
|
|
|
|
|
|
|
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
float *x;
|
|
|
|
float *y;
|
|
|
|
} float_pair;
|
|
|
|
|
|
|
|
float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps)
|
|
|
|
{
|
|
|
|
int b;
|
|
|
|
assert(net.batch == steps + 1);
|
|
|
|
image out_im = get_network_image(net);
|
|
|
|
int output_size = out_im.w*out_im.h*out_im.c;
|
|
|
|
printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
|
|
|
|
float *feats = calloc(net.batch*batch*output_size, sizeof(float));
|
|
|
|
for(b = 0; b < batch; ++b){
|
|
|
|
int input_size = net.w*net.h*net.c;
|
|
|
|
float *input = calloc(input_size*net.batch, sizeof(float));
|
|
|
|
char *filename = files[rand()%n];
|
|
|
|
CvCapture *cap = cvCaptureFromFile(filename);
|
|
|
|
int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT);
|
|
|
|
int index = rand() % (frames - steps - 2);
|
|
|
|
if (frames < (steps + 4)){
|
|
|
|
--b;
|
|
|
|
free(input);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("frames: %d, index: %d\n", frames, index);
|
|
|
|
cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index);
|
|
|
|
|
|
|
|
int i;
|
|
|
|
for(i = 0; i < net.batch; ++i){
|
|
|
|
IplImage* src = cvQueryFrame(cap);
|
|
|
|
image im = ipl_to_image(src);
|
|
|
|
rgbgr_image(im);
|
|
|
|
image re = resize_image(im, net.w, net.h);
|
|
|
|
//show_image(re, "loaded");
|
|
|
|
//cvWaitKey(10);
|
|
|
|
memcpy(input + i*input_size, re.data, input_size*sizeof(float));
|
|
|
|
free_image(im);
|
|
|
|
free_image(re);
|
|
|
|
}
|
|
|
|
float *output = network_predict(net, input);
|
|
|
|
|
|
|
|
free(input);
|
|
|
|
|
|
|
|
for(i = 0; i < net.batch; ++i){
|
|
|
|
memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
cvReleaseCapture(&cap);
|
|
|
|
}
|
|
|
|
|
|
|
|
//printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
|
|
|
|
float_pair p = {0};
|
|
|
|
p.x = feats;
|
|
|
|
p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c;
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void train_vid_rnn(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
char *train_videos = "data/vid/train.txt";
|
|
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
|
|
|
srand(time(0));
|
|
|
|
char *base = basecfg(cfgfile);
|
|
|
|
printf("%s\n", base);
|
|
|
|
float avg_loss = -1;
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
|
|
|
int imgs = net.batch*net.subdivisions;
|
|
|
|
int i = *net.seen/imgs;
|
|
|
|
|
|
|
|
list *plist = get_paths(train_videos);
|
|
|
|
int N = plist->size;
|
|
|
|
char **paths = (char **)list_to_array(plist);
|
|
|
|
clock_t time;
|
|
|
|
int steps = net.time_steps;
|
|
|
|
int batch = net.batch / net.time_steps;
|
|
|
|
|
|
|
|
network extractor = parse_network_cfg("cfg/extractor.cfg");
|
|
|
|
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
|
|
|
|
|
|
|
while(get_current_batch(net) < net.max_batches){
|
|
|
|
i += 1;
|
|
|
|
time=clock();
|
|
|
|
float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps);
|
|
|
|
|
2017-04-10 05:56:42 +03:00
|
|
|
memcpy(net.input, p.x, net.inputs*net.batch);
|
|
|
|
memcpy(net.truth, p.y, net.truths*net.batch);
|
|
|
|
float loss = train_network_datum(net) / (net.batch);
|
2016-03-01 00:54:12 +03:00
|
|
|
|
|
|
|
|
|
|
|
free(p.x);
|
|
|
|
if (avg_loss < 0) avg_loss = loss;
|
|
|
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
|
|
|
|
|
|
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
|
|
|
|
if(i%100==0){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
if(i%10==0){
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
|
|
|
save_weights(net, buff);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
image save_reconstruction(network net, image *init, float *feat, char *name, int i)
|
|
|
|
{
|
|
|
|
image recon;
|
|
|
|
if (init) {
|
|
|
|
recon = copy_image(*init);
|
|
|
|
} else {
|
|
|
|
recon = make_random_image(net.w, net.h, 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
image update = make_image(net.w, net.h, 3);
|
|
|
|
reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50);
|
|
|
|
char buff[256];
|
|
|
|
sprintf(buff, "%s%d", name, i);
|
|
|
|
save_image(recon, buff);
|
|
|
|
free_image(update);
|
|
|
|
return recon;
|
|
|
|
}
|
|
|
|
|
|
|
|
void generate_vid_rnn(char *cfgfile, char *weightfile)
|
|
|
|
{
|
|
|
|
network extractor = parse_network_cfg("cfg/extractor.recon.cfg");
|
|
|
|
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
|
|
|
|
|
|
|
|
network net = parse_network_cfg(cfgfile);
|
|
|
|
if(weightfile){
|
|
|
|
load_weights(&net, weightfile);
|
|
|
|
}
|
|
|
|
set_batch_network(&extractor, 1);
|
|
|
|
set_batch_network(&net, 1);
|
|
|
|
|
|
|
|
int i;
|
|
|
|
CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");
|
|
|
|
float *feat;
|
|
|
|
float *next;
|
|
|
|
image last;
|
|
|
|
for(i = 0; i < 25; ++i){
|
|
|
|
image im = get_image_from_stream(cap);
|
|
|
|
image re = resize_image(im, extractor.w, extractor.h);
|
|
|
|
feat = network_predict(extractor, re.data);
|
|
|
|
if(i > 0){
|
|
|
|
printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512));
|
|
|
|
printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512));
|
|
|
|
printf("%f\n", mse_array(feat, 14*14*512));
|
|
|
|
axpy_cpu(14*14*512, -1, feat, 1, next, 1);
|
|
|
|
printf("%f\n", mse_array(next, 14*14*512));
|
|
|
|
}
|
|
|
|
next = network_predict(net, feat);
|
|
|
|
|
|
|
|
free_image(im);
|
|
|
|
|
|
|
|
free_image(save_reconstruction(extractor, 0, feat, "feat", i));
|
|
|
|
free_image(save_reconstruction(extractor, 0, next, "next", i));
|
|
|
|
if (i==24) last = copy_image(re);
|
|
|
|
free_image(re);
|
|
|
|
}
|
|
|
|
for(i = 0; i < 30; ++i){
|
|
|
|
next = network_predict(net, next);
|
|
|
|
image new = save_reconstruction(extractor, &last, next, "new", i);
|
|
|
|
free_image(last);
|
|
|
|
last = new;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void run_vid_rnn(int argc, char **argv)
|
|
|
|
{
|
|
|
|
if(argc < 4){
|
|
|
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *cfg = argv[3];
|
|
|
|
char *weights = (argc > 4) ? argv[4] : 0;
|
|
|
|
//char *filename = (argc > 5) ? argv[5]: 0;
|
|
|
|
if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights);
|
|
|
|
else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
void run_vid_rnn(int argc, char **argv){}
|
|
|
|
#endif
|
|
|
|
|