darknet/examples/rnn_vid.c

209 lines
6.6 KiB
C
Raw Normal View History

2017-06-02 06:31:13 +03:00
#include "darknet.h"
2016-03-01 00:54:12 +03:00
#ifdef OPENCV
image get_image_from_stream(CvCapture *cap);
image ipl_to_image(IplImage* src);
2016-03-01 00:54:12 +03:00
void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
typedef struct {
float *x;
float *y;
} float_pair;
float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps)
{
int b;
assert(net.batch == steps + 1);
image out_im = get_network_image(net);
int output_size = out_im.w*out_im.h*out_im.c;
printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
float *feats = calloc(net.batch*batch*output_size, sizeof(float));
for(b = 0; b < batch; ++b){
int input_size = net.w*net.h*net.c;
float *input = calloc(input_size*net.batch, sizeof(float));
char *filename = files[rand()%n];
CvCapture *cap = cvCaptureFromFile(filename);
int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT);
int index = rand() % (frames - steps - 2);
if (frames < (steps + 4)){
--b;
free(input);
continue;
}
printf("frames: %d, index: %d\n", frames, index);
cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index);
int i;
for(i = 0; i < net.batch; ++i){
IplImage* src = cvQueryFrame(cap);
image im = ipl_to_image(src);
rgbgr_image(im);
image re = resize_image(im, net.w, net.h);
//show_image(re, "loaded");
//cvWaitKey(10);
memcpy(input + i*input_size, re.data, input_size*sizeof(float));
free_image(im);
free_image(re);
}
float *output = network_predict(net, input);
free(input);
for(i = 0; i < net.batch; ++i){
memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float));
}
cvReleaseCapture(&cap);
}
//printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
float_pair p = {0};
p.x = feats;
p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c;
return p;
}
void train_vid_rnn(char *cfgfile, char *weightfile)
{
char *train_videos = "data/vid/train.txt";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
list *plist = get_paths(train_videos);
int N = plist->size;
char **paths = (char **)list_to_array(plist);
clock_t time;
int steps = net.time_steps;
int batch = net.batch / net.time_steps;
network extractor = parse_network_cfg("cfg/extractor.cfg");
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps);
memcpy(net.input, p.x, net.inputs*net.batch);
memcpy(net.truth, p.y, net.truths*net.batch);
float loss = train_network_datum(net) / (net.batch);
2016-03-01 00:54:12 +03:00
free(p.x);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%10==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
image save_reconstruction(network net, image *init, float *feat, char *name, int i)
{
image recon;
if (init) {
recon = copy_image(*init);
} else {
recon = make_random_image(net.w, net.h, 3);
}
image update = make_image(net.w, net.h, 3);
reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50);
char buff[256];
sprintf(buff, "%s%d", name, i);
save_image(recon, buff);
free_image(update);
return recon;
}
void generate_vid_rnn(char *cfgfile, char *weightfile)
{
network extractor = parse_network_cfg("cfg/extractor.recon.cfg");
load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&extractor, 1);
set_batch_network(&net, 1);
int i;
CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");
float *feat;
float *next;
image last;
for(i = 0; i < 25; ++i){
image im = get_image_from_stream(cap);
image re = resize_image(im, extractor.w, extractor.h);
feat = network_predict(extractor, re.data);
if(i > 0){
printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512));
printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512));
printf("%f\n", mse_array(feat, 14*14*512));
axpy_cpu(14*14*512, -1, feat, 1, next, 1);
printf("%f\n", mse_array(next, 14*14*512));
}
next = network_predict(net, feat);
free_image(im);
free_image(save_reconstruction(extractor, 0, feat, "feat", i));
free_image(save_reconstruction(extractor, 0, next, "next", i));
if (i==24) last = copy_image(re);
free_image(re);
}
for(i = 0; i < 30; ++i){
next = network_predict(net, next);
image new = save_reconstruction(extractor, &last, next, "new", i);
free_image(last);
last = new;
}
}
void run_vid_rnn(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
//char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights);
else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights);
}
#else
void run_vid_rnn(int argc, char **argv){}
#endif