mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Temporary Slow implementation of XNOR on CUDA (shared_memory)
This commit is contained in:
@ -110,7 +110,7 @@ half *cuda_make_f16_from_f32_array(float *src, size_t n)
|
||||
|
||||
void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
{
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
//fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
if(l.binary){
|
||||
binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu);
|
||||
swap_binary(&l);
|
||||
@ -123,106 +123,52 @@ void forward_convolutional_layer_gpu(convolutional_layer l, network_state state)
|
||||
swap_binary(&l);
|
||||
binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu);
|
||||
state.input = l.binary_input_gpu;
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
if (l.align_bit_weights_gpu && !state.train)
|
||||
{
|
||||
cudaError_t status;
|
||||
//status = cudaMemcpy(l.align_bit_weights, l.align_bit_weights_gpu, l.align_bit_weights_size, cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
|
||||
//float *input = (float *)calloc(l.c*l.h*l.w*l.batch, sizeof(float));
|
||||
//float *workspace = (float *)calloc(l.bit_align*l.size*l.size*l.c, sizeof(float));
|
||||
//float *output = (float *)calloc(l.batch*l.out_c*l.out_h*l.out_w, sizeof(float));
|
||||
|
||||
//status = cudaMemcpy(input, state.input, l.c*l.h*l.w*l.batch*sizeof(float), cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
cudaError_t status = cudaSuccess;
|
||||
|
||||
int m = l.n;
|
||||
int k = l.size*l.size*l.c;
|
||||
int n = l.out_w*l.out_h;
|
||||
float * a = l.weights_gpu;
|
||||
//float * b = state.workspace;
|
||||
//float *b = workspace;
|
||||
//float * c = l.output_gpu;
|
||||
//float *c = output;
|
||||
|
||||
int ldb_align = l.lda_align;
|
||||
size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
|
||||
size_t t_intput_size = new_ldb * n;
|
||||
size_t t_bit_input_size = t_intput_size / 8;// +1;
|
||||
|
||||
//char *t_bit_input = (char *)calloc(t_bit_input_size, sizeof(char));
|
||||
//int src_size = k * l.bit_align;
|
||||
|
||||
//im2col_cpu_custom_bin(input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
|
||||
|
||||
//float *align_workspace = NULL;
|
||||
//int align_workspace_size = l.bit_align * k; // aligned: n*k
|
||||
//status = cudaMalloc((void **)&align_workspace, align_workspace_size*sizeof(float));
|
||||
//check_error(status);
|
||||
|
||||
int i = 0;
|
||||
im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.align_workspace_gpu, l.bit_align);
|
||||
|
||||
float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size);
|
||||
|
||||
if(1)
|
||||
{
|
||||
fill_int8_gpu((unsigned char *)l.align_workspace_gpu, 0, t_bit_input_size);
|
||||
|
||||
transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.align_workspace_gpu, k, n, l.bit_align, new_ldb, 8);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
//int size_transposed_array = l.bit_align * new_ldb;
|
||||
//status = cudaMemcpy(t_bit_input, l.align_workspace_gpu, t_bit_input_size, cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
}
|
||||
|
||||
/*
|
||||
if (0) {
|
||||
status = cudaMemcpy(b, state.workspace, l.align_workspace_size / 8, cudaMemcpyDeviceToHost);
|
||||
check_error(status);
|
||||
//float *im2 = (float *)calloc(l.align_workspace_size, sizeof(float));
|
||||
//status = cudaMemcpy(im2, l.align_workspace_gpu, l.align_workspace_size * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
//float_to_bit(im2, (unsigned char *)b, l.align_workspace_size);
|
||||
|
||||
memset(t_bit_input, 0, t_bit_input_size);
|
||||
// b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size
|
||||
// t_input - [bit_align, k] - [n', k]
|
||||
// t_bit_input - [new_ldb, n] - [k', n]
|
||||
transpose_bin((char *)b, t_bit_input, k, n, l.bit_align, new_ldb, 8);
|
||||
}
|
||||
*/
|
||||
|
||||
//status = cudaMemcpy(l.align_bit_weights, l.align_bit_weights_gpu, new_ldb * m / 8, cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
|
||||
//status = cudaMemcpy(l.mean_arr, l.mean_arr_gpu, l.n * sizeof(float), cudaMemcpyDeviceToHost);
|
||||
//check_error(status);
|
||||
|
||||
// 5x times faster than gemm()-float32
|
||||
//gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char *)l.align_bit_weights, new_ldb, (unsigned char *)t_bit_input, new_ldb, c, n, l.mean_arr);
|
||||
//status = cudaMemcpy(l.output_gpu, output, l.batch*l.out_c*l.out_h*l.out_w * sizeof(float), cudaMemcpyHostToDevice);
|
||||
//check_error(status);
|
||||
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k, 1,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
//free(t_bit_input);
|
||||
//free(input);
|
||||
//free(workspace);
|
||||
//free(output);
|
||||
//cudaFree(align_workspace);
|
||||
// should be optimized
|
||||
float_to_bit_gpu(l.align_workspace_gpu, (unsigned char *)state.workspace, l.align_workspace_size);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
//im2col_align_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
|
||||
|
||||
transpose_bin_gpu((unsigned char *)state.workspace, (unsigned char *)l.transposed_align_workspace_gpu, k, n, l.bit_align, new_ldb, 8);
|
||||
//cudaDeviceSynchronize();
|
||||
|
||||
|
||||
// should be optimized
|
||||
gemm_nn_custom_bin_mean_transposed_gpu(m, n, k,
|
||||
(unsigned char *)l.align_bit_weights_gpu, new_ldb, (unsigned char *)l.transposed_align_workspace_gpu, new_ldb, l.output_gpu, n, l.mean_arr_gpu);
|
||||
//cudaDeviceSynchronize();
|
||||
//check_error(status);
|
||||
|
||||
add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h);
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
if (l.binary || l.xnor) swap_binary(&l);
|
||||
//cudaDeviceSynchronize();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
|
||||
#ifdef CUDNN
|
||||
float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT
|
||||
float alpha = 1, beta = 0;
|
||||
|
Reference in New Issue
Block a user