mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Some changes
This commit is contained in:
48
src/coco.c
48
src/coco.c
@ -15,30 +15,7 @@ char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","
|
||||
|
||||
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
|
||||
|
||||
void draw_coco(image im, int num, float thresh, box *boxes, float **probs)
|
||||
{
|
||||
int classes = 80;
|
||||
int i;
|
||||
|
||||
for(i = 0; i < num; ++i){
|
||||
int class = max_index(probs[i], classes);
|
||||
float prob = probs[i][class];
|
||||
if(prob > thresh){
|
||||
int width = sqrt(prob)*5 + 1;
|
||||
printf("%f %s\n", prob, coco_classes[class]);
|
||||
float red = get_color(0,class,classes);
|
||||
float green = get_color(1,class,classes);
|
||||
float blue = get_color(2,class,classes);
|
||||
box b = boxes[i];
|
||||
|
||||
int left = (b.x-b.w/2.)*im.w;
|
||||
int right = (b.x+b.w/2.)*im.w;
|
||||
int top = (b.y-b.h/2.)*im.h;
|
||||
int bot = (b.y+b.h/2.)*im.h;
|
||||
draw_box_width(im, left, top, right, bot, width, red, green, blue);
|
||||
}
|
||||
}
|
||||
}
|
||||
image coco_labels[80];
|
||||
|
||||
void train_coco(char *cfgfile, char *weightfile)
|
||||
{
|
||||
@ -368,6 +345,7 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
detection_layer l = net.layers[net.n-1];
|
||||
set_batch_network(&net, 1);
|
||||
srand(2222222);
|
||||
float nms = .4;
|
||||
clock_t time;
|
||||
char buff[256];
|
||||
char *input = buff;
|
||||
@ -392,7 +370,8 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
float *predictions = network_predict(net, X);
|
||||
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
|
||||
convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
|
||||
draw_coco(im, l.side*l.side*l.n, thresh, boxes, probs);
|
||||
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
|
||||
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80);
|
||||
show_image(im, "predictions");
|
||||
|
||||
show_image(sized, "resized");
|
||||
@ -406,9 +385,23 @@ void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef OPENCV
|
||||
#ifdef GPU
|
||||
void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
void run_coco(int argc, char **argv)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < 80; ++i){
|
||||
char buff[256];
|
||||
sprintf(buff, "data/labels/%s.png", coco_classes[i]);
|
||||
coco_labels[i] = load_image_color(buff, 0, 0);
|
||||
}
|
||||
float thresh = find_float_arg(argc, argv, "-thresh", .2);
|
||||
int cam_index = find_int_arg(argc, argv, "-c", 0);
|
||||
|
||||
if(argc < 4){
|
||||
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
||||
return;
|
||||
@ -421,4 +414,9 @@ void run_coco(int argc, char **argv)
|
||||
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
|
||||
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
|
||||
#ifdef OPENCV
|
||||
#ifdef GPU
|
||||
else if(0==strcmp(argv[2], "demo")) demo_coco(cfg, weights, thresh, cam_index);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
Reference in New Issue
Block a user