mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed batch stuff in conv layer
This commit is contained in:
@ -79,7 +79,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, layer.batch*out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
#endif
|
||||
@ -124,24 +124,32 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
{
|
||||
int out_h = convolutional_out_height(layer);
|
||||
int out_w = convolutional_out_width(layer);
|
||||
int i;
|
||||
|
||||
bias_output(layer);
|
||||
|
||||
int m = layer.n;
|
||||
int k = layer.size*layer.size*layer.c;
|
||||
int n = out_h*out_w*layer.batch;
|
||||
int n = out_h*out_w;
|
||||
|
||||
float *a = layer.filters;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
bias_output(layer);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
c += n*m;
|
||||
in += layer.h*layer.w*layer.c;
|
||||
b += k*n;
|
||||
}
|
||||
/*
|
||||
int i;
|
||||
for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
|
||||
printf("\n");
|
||||
*/
|
||||
activate_array(layer.output, m*n, layer.activation, 0.);
|
||||
activate_array(layer.output, m*n*layer.batch, layer.activation, 0.);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
@ -178,35 +186,42 @@ void learn_bias_convolutional_layer(convolutional_layer layer)
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
int n = layer.size*layer.size*layer.c;
|
||||
int k = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
gradient_array(layer.output, m*k, layer.activation, layer.delta);
|
||||
convolutional_out_width(layer);
|
||||
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
||||
learn_bias_convolutional_layer(layer);
|
||||
|
||||
float *a = layer.delta;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
a += m*k;
|
||||
b += k*n;
|
||||
}
|
||||
|
||||
if(delta){
|
||||
m = layer.size*layer.size*layer.c;
|
||||
k = layer.n;
|
||||
n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer)*
|
||||
layer.batch;
|
||||
convolutional_out_width(layer);
|
||||
|
||||
a = layer.filters;
|
||||
b = layer.delta;
|
||||
c = layer.col_image;
|
||||
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
col2im_cpu(c, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
col2im_cpu(c, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
||||
c += k*n;
|
||||
delta += layer.h*layer.w*layer.c;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user