Stable, needs to be way faster

This commit is contained in:
Joseph Redmon 2015-01-14 12:18:57 -08:00
parent aa5996d58e
commit 08b757a0bf
4 changed files with 37 additions and 7 deletions

View File

@ -105,7 +105,7 @@ void train_detection_net(char *cfgfile)
time=clock(); time=clock();
float loss = train_network(net, train); float loss = train_network(net, train);
avg_loss = avg_loss*.9 + loss*.1; avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch); printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
if(i%100==0){ if(i%100==0){
char buff[256]; char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i); sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
@ -213,7 +213,7 @@ void train_imagenet(char *cfgfile)
set_learning_network(&net, net.learning_rate, 0, net.decay); set_learning_network(&net, net.learning_rate, 0, net.decay);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1024; int imgs = 1024;
int i = 77700; int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list"); char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list"); list *plist = get_paths("/data/imagenet/cls.train.list");
char **paths = (char **)list_to_array(plist); char **paths = (char **)list_to_array(plist);
@ -240,7 +240,7 @@ void train_imagenet(char *cfgfile)
free_data(train); free_data(train);
if(i%100==0){ if(i%100==0){
char buff[256]; char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i); sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
save_network(net, buff); save_network(net, buff);
} }
} }

View File

@ -15,6 +15,35 @@
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
char *get_layer_string(LAYER_TYPE a)
{
switch(a){
case CONVOLUTIONAL:
return "convolutional";
case CONNECTED:
return "connected";
case MAXPOOL:
return "maxpool";
case SOFTMAX:
return "softmax";
case NORMALIZATION:
return "normalization";
case DROPOUT:
return "dropout";
case FREEWEIGHT:
return "freeweight";
case CROP:
return "crop";
case COST:
return "cost";
default:
break;
}
return "none";
}
network make_network(int n, int batch) network make_network(int n, int batch)
{ {
network net; network net;

View File

@ -41,6 +41,7 @@ float *network_predict_gpu(network net, float *input);
#endif #endif
void compare_networks(network n1, network n2, data d); void compare_networks(network n1, network n2, data d);
char *get_layer_string(LAYER_TYPE a);
network make_network(int n, int batch); network make_network(int n, int batch);
void forward_network(network net, float *input, float *truth, int train); void forward_network(network net, float *input, float *truth, int train);

View File

@ -24,7 +24,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{ {
int i; int i;
for(i = 0; i < net.n; ++i){ for(i = 0; i < net.n; ++i){
clock_t time = clock(); //clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i]; convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input); forward_convolutional_layer_gpu(layer, input);
@ -61,7 +61,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
input = layer.output_cl; input = layer.output_cl;
} }
check_error(cl); check_error(cl);
//printf("Forw %d %f\n", i, sec(clock() - time)); //printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
} }
} }
@ -71,7 +71,7 @@ void backward_network_gpu(network net, cl_mem input)
cl_mem prev_input; cl_mem prev_input;
cl_mem prev_delta; cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){ for(i = net.n-1; i >= 0; --i){
clock_t time = clock(); //clock_t time = clock();
if(i == 0){ if(i == 0){
prev_input = input; prev_input = input;
prev_delta = 0; prev_delta = 0;
@ -104,7 +104,7 @@ void backward_network_gpu(network net, cl_mem input)
backward_softmax_layer_gpu(layer, prev_delta); backward_softmax_layer_gpu(layer, prev_delta);
} }
check_error(cl); check_error(cl);
//printf("Back %d %f\n", i, sec(clock() - time)); //printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
} }
} }