mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Stable, needs to be way faster
This commit is contained in:
parent
aa5996d58e
commit
08b757a0bf
@ -105,7 +105,7 @@ void train_detection_net(char *cfgfile)
|
||||
time=clock();
|
||||
float loss = train_network(net, train);
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/detnet_%d.cfg", i);
|
||||
@ -213,7 +213,7 @@ void train_imagenet(char *cfgfile)
|
||||
set_learning_network(&net, net.learning_rate, 0, net.decay);
|
||||
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
||||
int imgs = 1024;
|
||||
int i = 77700;
|
||||
int i = 0;
|
||||
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
||||
list *plist = get_paths("/data/imagenet/cls.train.list");
|
||||
char **paths = (char **)list_to_array(plist);
|
||||
@ -240,7 +240,7 @@ void train_imagenet(char *cfgfile)
|
||||
free_data(train);
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/net_%d.cfg", i);
|
||||
sprintf(buff, "/home/pjreddie/imagenet_backup/alexnet_%d.cfg", i);
|
||||
save_network(net, buff);
|
||||
}
|
||||
}
|
||||
|
@ -15,6 +15,35 @@
|
||||
#include "softmax_layer.h"
|
||||
#include "dropout_layer.h"
|
||||
|
||||
char *get_layer_string(LAYER_TYPE a)
|
||||
{
|
||||
switch(a){
|
||||
case CONVOLUTIONAL:
|
||||
return "convolutional";
|
||||
case CONNECTED:
|
||||
return "connected";
|
||||
case MAXPOOL:
|
||||
return "maxpool";
|
||||
case SOFTMAX:
|
||||
return "softmax";
|
||||
case NORMALIZATION:
|
||||
return "normalization";
|
||||
case DROPOUT:
|
||||
return "dropout";
|
||||
case FREEWEIGHT:
|
||||
return "freeweight";
|
||||
case CROP:
|
||||
return "crop";
|
||||
case COST:
|
||||
return "cost";
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return "none";
|
||||
}
|
||||
|
||||
|
||||
|
||||
network make_network(int n, int batch)
|
||||
{
|
||||
network net;
|
||||
|
@ -41,6 +41,7 @@ float *network_predict_gpu(network net, float *input);
|
||||
#endif
|
||||
|
||||
void compare_networks(network n1, network n2, data d);
|
||||
char *get_layer_string(LAYER_TYPE a);
|
||||
|
||||
network make_network(int n, int batch);
|
||||
void forward_network(network net, float *input, float *truth, int train);
|
||||
|
@ -24,7 +24,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < net.n; ++i){
|
||||
clock_t time = clock();
|
||||
//clock_t time = clock();
|
||||
if(net.types[i] == CONVOLUTIONAL){
|
||||
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
||||
forward_convolutional_layer_gpu(layer, input);
|
||||
@ -61,7 +61,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
|
||||
input = layer.output_cl;
|
||||
}
|
||||
check_error(cl);
|
||||
//printf("Forw %d %f\n", i, sec(clock() - time));
|
||||
//printf("Forward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
|
||||
}
|
||||
}
|
||||
|
||||
@ -71,7 +71,7 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
cl_mem prev_input;
|
||||
cl_mem prev_delta;
|
||||
for(i = net.n-1; i >= 0; --i){
|
||||
clock_t time = clock();
|
||||
//clock_t time = clock();
|
||||
if(i == 0){
|
||||
prev_input = input;
|
||||
prev_delta = 0;
|
||||
@ -104,7 +104,7 @@ void backward_network_gpu(network net, cl_mem input)
|
||||
backward_softmax_layer_gpu(layer, prev_delta);
|
||||
}
|
||||
check_error(cl);
|
||||
//printf("Back %d %f\n", i, sec(clock() - time));
|
||||
//printf("Backward %d %s %f\n", i, get_layer_string(net.types[i]), sec(clock() - time));
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user