This commit is contained in:
Joseph Redmon 2015-05-08 10:33:47 -07:00
parent e7688a05a1
commit 0cbfa46461
7 changed files with 86 additions and 10 deletions

View File

@ -25,7 +25,7 @@ CFLAGS+=-DGPU
LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
endif endif
OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o OBJ=gemm.o utils.o cuda.o deconvolutional_layer.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o normalization_layer.o parser.o option_list.o darknet.o detection_layer.o imagenet.o captcha.o detection.o route_layer.o
ifeq ($(GPU), 1) ifeq ($(GPU), 1)
OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o OBJ+=convolutional_kernels.o deconvolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o softmax_layer_kernels.o network_kernels.o
endif endif

View File

@ -167,8 +167,10 @@ void fill_truth_detection(char *path, float *truth, int classes, int num_boxes,
h = constrain(0, 1, h); h = constrain(0, 1, h);
if (w == 0 || h == 0) continue; if (w == 0 || h == 0) continue;
if(1){ if(1){
w = sqrt(w); //w = sqrt(w);
h = sqrt(h); //h = sqrt(h);
w = pow(w, 1./2.);
h = pow(h, 1./2.);
} }
int index = (i+j*num_boxes)*(4+classes+background); int index = (i+j*num_boxes)*(4+classes+background);

View File

@ -308,8 +308,8 @@ void predict_detections(network net, data d, float threshold, int offset, int cl
float y = (pred.vals[j][ci + 1] + row)/num_boxes; float y = (pred.vals[j][ci + 1] + row)/num_boxes;
float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes); float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes); float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
w = w*w; w = pow(w, 2);
h = h*h; h = pow(h, 2);
float prob = scale*pred.vals[j][k+class+background+nuisance]; float prob = scale*pred.vals[j][k+class+background+nuisance];
if(prob < threshold) continue; if(prob < threshold) continue;
printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h); printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h);

View File

@ -4,7 +4,6 @@
#include "image.h" #include "image.h"
#include "data.h" #include "data.h"
#include "utils.h" #include "utils.h"
#include "params.h"
#include "crop_layer.h" #include "crop_layer.h"
#include "connected_layer.h" #include "connected_layer.h"
@ -16,6 +15,7 @@
#include "normalization_layer.h" #include "normalization_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
#include "route_layer.h"
char *get_layer_string(LAYER_TYPE a) char *get_layer_string(LAYER_TYPE a)
{ {
@ -40,6 +40,8 @@ char *get_layer_string(LAYER_TYPE a)
return "crop"; return "crop";
case COST: case COST:
return "cost"; return "cost";
case ROUTE:
return "route";
default: default:
break; break;
} }
@ -99,6 +101,9 @@ void forward_network(network net, network_state state)
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
forward_dropout_layer(*(dropout_layer *)net.layers[i], state); forward_dropout_layer(*(dropout_layer *)net.layers[i], state);
} }
else if(net.types[i] == ROUTE){
forward_route_layer(*(route_layer *)net.layers[i], net);
}
state.input = get_network_output_layer(net, i); state.input = get_network_output_layer(net, i);
} }
} }
@ -143,6 +148,8 @@ float *get_network_output_layer(network net, int i)
return ((crop_layer *)net.layers[i]) -> output; return ((crop_layer *)net.layers[i]) -> output;
} else if(net.types[i] == NORMALIZATION){ } else if(net.types[i] == NORMALIZATION){
return ((normalization_layer *)net.layers[i]) -> output; return ((normalization_layer *)net.layers[i]) -> output;
} else if(net.types[i] == ROUTE){
return ((route_layer *)net.layers[i]) -> output;
} }
return 0; return 0;
} }
@ -177,6 +184,8 @@ float *get_network_delta_layer(network net, int i)
} else if(net.types[i] == CONNECTED){ } else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
return layer.delta; return layer.delta;
} else if(net.types[i] == ROUTE){
return ((route_layer *)net.layers[i]) -> delta;
} }
return 0; return 0;
} }
@ -247,10 +256,12 @@ void backward_network(network net, network_state state)
else if(net.types[i] == CONNECTED){ else if(net.types[i] == CONNECTED){
connected_layer layer = *(connected_layer *)net.layers[i]; connected_layer layer = *(connected_layer *)net.layers[i];
backward_connected_layer(layer, state); backward_connected_layer(layer, state);
} } else if(net.types[i] == COST){
else if(net.types[i] == COST){
cost_layer layer = *(cost_layer *)net.layers[i]; cost_layer layer = *(cost_layer *)net.layers[i];
backward_cost_layer(layer, state); backward_cost_layer(layer, state);
} else if(net.types[i] == ROUTE){
route_layer layer = *(route_layer *)net.layers[i];
backward_route_layer(layer, net);
} }
} }
} }
@ -369,6 +380,10 @@ void set_batch_network(network *net, int b)
crop_layer *layer = (crop_layer *)net->layers[i]; crop_layer *layer = (crop_layer *)net->layers[i];
layer->batch = b; layer->batch = b;
} }
else if(net->types[i] == ROUTE){
route_layer *layer = (route_layer *)net->layers[i];
layer->batch = b;
}
} }
} }
@ -445,12 +460,17 @@ int get_network_output_size_layer(network net, int i)
softmax_layer layer = *(softmax_layer *)net.layers[i]; softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.inputs; return layer.inputs;
} }
else if(net.types[i] == ROUTE){
route_layer layer = *(route_layer *)net.layers[i];
return layer.outputs;
}
fprintf(stderr, "Can't find output size\n"); fprintf(stderr, "Can't find output size\n");
return 0; return 0;
} }
int resize_network(network net, int h, int w, int c) int resize_network(network net, int h, int w, int c)
{ {
fprintf(stderr, "Might be broken, careful!!");
int i; int i;
for (i = 0; i < net.n; ++i){ for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){ if(net.types[i] == CONVOLUTIONAL){
@ -540,6 +560,10 @@ image get_network_image_layer(network net, int i)
crop_layer layer = *(crop_layer *)net.layers[i]; crop_layer layer = *(crop_layer *)net.layers[i];
return get_crop_image(layer); return get_crop_image(layer);
} }
else if(net.types[i] == ROUTE){
route_layer layer = *(route_layer *)net.layers[i];
return get_network_image_layer(net, layer.input_layers[0]);
}
return make_empty_image(0,0,0); return make_empty_image(0,0,0);
} }

View File

@ -4,7 +4,6 @@
#include "image.h" #include "image.h"
#include "detection_layer.h" #include "detection_layer.h"
#include "params.h"
#include "data.h" #include "data.h"
typedef enum { typedef enum {
@ -17,6 +16,7 @@ typedef enum {
NORMALIZATION, NORMALIZATION,
DROPOUT, DROPOUT,
CROP, CROP,
ROUTE,
COST COST
} LAYER_TYPE; } LAYER_TYPE;

View File

@ -18,11 +18,12 @@ extern "C" {
#include "normalization_layer.h" #include "normalization_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
#include "route_layer.h"
} }
float * get_network_output_gpu_layer(network net, int i); float * get_network_output_gpu_layer(network net, int i);
float * get_network_delta_gpu_layer(network net, int i); float * get_network_delta_gpu_layer(network net, int i);
float *get_network_output_gpu(network net); float * get_network_output_gpu(network net);
void forward_network_gpu(network net, network_state state) void forward_network_gpu(network net, network_state state)
{ {
@ -55,6 +56,9 @@ void forward_network_gpu(network net, network_state state)
else if(net.types[i] == CROP){ else if(net.types[i] == CROP){
forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state); forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
} }
else if(net.types[i] == ROUTE){
forward_route_layer_gpu(*(route_layer *)net.layers[i], net);
}
state.input = get_network_output_gpu_layer(net, i); state.input = get_network_output_gpu_layer(net, i);
} }
} }
@ -96,6 +100,9 @@ void backward_network_gpu(network net, network_state state)
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state); backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
} }
else if(net.types[i] == ROUTE){
backward_route_layer_gpu(*(route_layer *)net.layers[i], net);
}
} }
} }
@ -142,6 +149,9 @@ float * get_network_output_gpu_layer(network net, int i)
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
return ((softmax_layer *)net.layers[i]) -> output_gpu; return ((softmax_layer *)net.layers[i]) -> output_gpu;
} }
else if(net.types[i] == ROUTE){
return ((route_layer *)net.layers[i]) -> output_gpu;
}
else if(net.types[i] == DROPOUT){ else if(net.types[i] == DROPOUT){
return get_network_output_gpu_layer(net, i-1); return get_network_output_gpu_layer(net, i-1);
} }
@ -170,6 +180,10 @@ float * get_network_delta_gpu_layer(network net, int i)
maxpool_layer layer = *(maxpool_layer *)net.layers[i]; maxpool_layer layer = *(maxpool_layer *)net.layers[i];
return layer.delta_gpu; return layer.delta_gpu;
} }
else if(net.types[i] == ROUTE){
route_layer layer = *(route_layer *)net.layers[i];
return layer.delta_gpu;
}
else if(net.types[i] == SOFTMAX){ else if(net.types[i] == SOFTMAX){
softmax_layer layer = *(softmax_layer *)net.layers[i]; softmax_layer layer = *(softmax_layer *)net.layers[i];
return layer.delta_gpu; return layer.delta_gpu;

View File

@ -14,6 +14,7 @@
#include "softmax_layer.h" #include "softmax_layer.h"
#include "dropout_layer.h" #include "dropout_layer.h"
#include "detection_layer.h" #include "detection_layer.h"
#include "route_layer.h"
#include "list.h" #include "list.h"
#include "option_list.h" #include "option_list.h"
#include "utils.h" #include "utils.h"
@ -34,6 +35,7 @@ int is_crop(section *s);
int is_cost(section *s); int is_cost(section *s);
int is_detection(section *s); int is_detection(section *s);
int is_normalization(section *s); int is_normalization(section *s);
int is_route(section *s);
list *read_cfg(char *filename); list *read_cfg(char *filename);
void free_section(section *s) void free_section(section *s)
@ -246,6 +248,32 @@ normalization_layer *parse_normalization(list *options, size_params params)
return layer; return layer;
} }
route_layer *parse_route(list *options, size_params params, network net)
{
char *l = option_find(options, "layers");
int len = strlen(l);
if(!l) error("Route Layer must specify input layers");
int n = 1;
int i;
for(i = 0; i < len; ++i){
if (l[i] == ',') ++n;
}
int *layers = calloc(n, sizeof(int));
int *sizes = calloc(n, sizeof(int));
for(i = 0; i < n; ++i){
int index = atoi(l);
l = strchr(l, ',')+1;
layers[i] = index;
sizes[i] = get_network_output_size_layer(net, index);
}
int batch = params.batch;
route_layer *layer = make_route_layer(batch, n, layers, sizes);
option_unused(options);
return layer;
}
void parse_net_options(list *options, network *net) void parse_net_options(list *options, network *net)
{ {
net->batch = option_find_int(options, "batch",1); net->batch = option_find_int(options, "batch",1);
@ -326,6 +354,10 @@ network parse_network_cfg(char *filename)
normalization_layer *layer = parse_normalization(options, params); normalization_layer *layer = parse_normalization(options, params);
net.types[count] = NORMALIZATION; net.types[count] = NORMALIZATION;
net.layers[count] = layer; net.layers[count] = layer;
}else if(is_route(s)){
route_layer *layer = parse_route(options, params, net);
net.types[count] = ROUTE;
net.layers[count] = layer;
}else if(is_dropout(s)){ }else if(is_dropout(s)){
dropout_layer *layer = parse_dropout(options, params); dropout_layer *layer = parse_dropout(options, params);
net.types[count] = DROPOUT; net.types[count] = DROPOUT;
@ -402,6 +434,10 @@ int is_normalization(section *s)
return (strcmp(s->type, "[lrnorm]")==0 return (strcmp(s->type, "[lrnorm]")==0
|| strcmp(s->type, "[localresponsenormalization]")==0); || strcmp(s->type, "[localresponsenormalization]")==0);
} }
int is_route(section *s)
{
return (strcmp(s->type, "[route]")==0);
}
int read_option(char *s, list *options) int read_option(char *s, list *options)
{ {