mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
some changes
This commit is contained in:
275
src/local_layer.c
Normal file
275
src/local_layer.c
Normal file
@ -0,0 +1,275 @@
|
||||
#include "local_layer.h"
|
||||
#include "utils.h"
|
||||
#include "im2col.h"
|
||||
#include "col2im.h"
|
||||
#include "blas.h"
|
||||
#include "gemm.h"
|
||||
#include <stdio.h>
|
||||
#include <time.h>
|
||||
|
||||
int local_out_height(local_layer l)
|
||||
{
|
||||
int h = l.h;
|
||||
if (!l.pad) h -= l.size;
|
||||
else h -= 1;
|
||||
return h/l.stride + 1;
|
||||
}
|
||||
|
||||
int local_out_width(local_layer l)
|
||||
{
|
||||
int w = l.w;
|
||||
if (!l.pad) w -= l.size;
|
||||
else w -= 1;
|
||||
return w/l.stride + 1;
|
||||
}
|
||||
|
||||
local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
||||
{
|
||||
int i;
|
||||
local_layer l = {0};
|
||||
l.type = LOCAL;
|
||||
|
||||
l.h = h;
|
||||
l.w = w;
|
||||
l.c = c;
|
||||
l.n = n;
|
||||
l.batch = batch;
|
||||
l.stride = stride;
|
||||
l.size = size;
|
||||
l.pad = pad;
|
||||
|
||||
int out_h = local_out_height(l);
|
||||
int out_w = local_out_width(l);
|
||||
int locations = out_h*out_w;
|
||||
l.out_h = out_h;
|
||||
l.out_w = out_w;
|
||||
l.out_c = n;
|
||||
l.outputs = l.out_h * l.out_w * l.out_c;
|
||||
l.inputs = l.w * l.h * l.c;
|
||||
|
||||
l.filters = calloc(c*n*size*size*locations, sizeof(float));
|
||||
l.filter_updates = calloc(c*n*size*size*locations, sizeof(float));
|
||||
|
||||
l.biases = calloc(l.outputs, sizeof(float));
|
||||
l.bias_updates = calloc(l.outputs, sizeof(float));
|
||||
|
||||
// float scale = 1./sqrt(size*size*c);
|
||||
float scale = sqrt(2./(size*size*c));
|
||||
for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale;
|
||||
|
||||
l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
l.output = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float));
|
||||
|
||||
#ifdef GPU
|
||||
l.filters_gpu = cuda_make_array(l.filters, c*n*size*size*locations);
|
||||
l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size*locations);
|
||||
|
||||
l.biases_gpu = cuda_make_array(l.biases, l.outputs);
|
||||
l.bias_updates_gpu = cuda_make_array(l.bias_updates, l.outputs);
|
||||
|
||||
l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c);
|
||||
l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
|
||||
l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
|
||||
|
||||
#endif
|
||||
l.activation = activation;
|
||||
|
||||
fprintf(stderr, "Local Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
void forward_local_layer(const local_layer l, network_state state)
|
||||
{
|
||||
int out_h = local_out_height(l);
|
||||
int out_w = local_out_width(l);
|
||||
int i, j;
|
||||
int locations = out_h * out_w;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_cpu(l.outputs, l.biases, 1, l.output + i*l.outputs, 1);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *input = state.input + i*l.w*l.h*l.c;
|
||||
im2col_cpu(input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, l.col_image);
|
||||
float *output = l.output + i*l.outputs;
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.filters + j*l.size*l.size*l.c*l.n;
|
||||
float *b = l.col_image + j;
|
||||
float *c = output + j;
|
||||
|
||||
int m = l.n;
|
||||
int n = 1;
|
||||
int k = l.size*l.size*l.c;
|
||||
|
||||
gemm(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
|
||||
}
|
||||
}
|
||||
activate_array(l.output, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_local_layer(local_layer l, network_state state)
|
||||
{
|
||||
int i, j;
|
||||
int locations = l.out_w*l.out_h;
|
||||
|
||||
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_cpu(l.outputs, 1, l.delta + i*l.outputs, 1, l.bias_updates, 1);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *input = state.input + i*l.w*l.h*l.c;
|
||||
im2col_cpu(input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, l.col_image);
|
||||
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.delta + i*l.outputs + j;
|
||||
float *b = l.col_image + j;
|
||||
float *c = l.filter_updates + j*l.size*l.size*l.c*l.n;
|
||||
int m = l.n;
|
||||
int n = l.size*l.size*l.c;
|
||||
int k = 1;
|
||||
|
||||
gemm(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
|
||||
}
|
||||
|
||||
if(state.delta){
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.filters + j*l.size*l.size*l.c*l.n;
|
||||
float *b = l.delta + i*l.outputs + j;
|
||||
float *c = l.col_image + j;
|
||||
|
||||
int m = l.size*l.size*l.c;
|
||||
int n = 1;
|
||||
int k = l.n;
|
||||
|
||||
gemm(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
|
||||
}
|
||||
|
||||
col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
||||
|
||||
axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1);
|
||||
axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1);
|
||||
scal_cpu(size, momentum, l.filter_updates, 1);
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void forward_local_layer_gpu(const local_layer l, network_state state)
|
||||
{
|
||||
int out_h = local_out_height(l);
|
||||
int out_w = local_out_width(l);
|
||||
int i, j;
|
||||
int locations = out_h * out_w;
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
copy_ongpu(l.outputs, l.biases_gpu, 1, l.output_gpu + i*l.outputs, 1);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *input = state.input + i*l.w*l.h*l.c;
|
||||
im2col_ongpu(input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
float *output = l.output_gpu + i*l.outputs;
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
|
||||
float *b = l.col_image_gpu + j;
|
||||
float *c = output + j;
|
||||
|
||||
int m = l.n;
|
||||
int n = 1;
|
||||
int k = l.size*l.size*l.c;
|
||||
|
||||
gemm_ongpu(0,0,m,n,k,1,a,k,b,locations,1,c,locations);
|
||||
}
|
||||
}
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_local_layer_gpu(local_layer l, network_state state)
|
||||
{
|
||||
int i, j;
|
||||
int locations = l.out_w*l.out_h;
|
||||
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
axpy_ongpu(l.outputs, 1, l.delta_gpu + i*l.outputs, 1, l.bias_updates_gpu, 1);
|
||||
}
|
||||
|
||||
for(i = 0; i < l.batch; ++i){
|
||||
float *input = state.input + i*l.w*l.h*l.c;
|
||||
im2col_ongpu(input, l.c, l.h, l.w,
|
||||
l.size, l.stride, l.pad, l.col_image_gpu);
|
||||
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.delta_gpu + i*l.outputs + j;
|
||||
float *b = l.col_image_gpu + j;
|
||||
float *c = l.filter_updates_gpu + j*l.size*l.size*l.c*l.n;
|
||||
int m = l.n;
|
||||
int n = l.size*l.size*l.c;
|
||||
int k = 1;
|
||||
|
||||
gemm_ongpu(0,1,m,n,k,1,a,locations,b,locations,1,c,n);
|
||||
}
|
||||
|
||||
if(state.delta){
|
||||
for(j = 0; j < locations; ++j){
|
||||
float *a = l.filters_gpu + j*l.size*l.size*l.c*l.n;
|
||||
float *b = l.delta_gpu + i*l.outputs + j;
|
||||
float *c = l.col_image_gpu + j;
|
||||
|
||||
int m = l.size*l.size*l.c;
|
||||
int n = 1;
|
||||
int k = l.n;
|
||||
|
||||
gemm_ongpu(1,0,m,n,k,1,a,m,b,locations,0,c,locations);
|
||||
}
|
||||
|
||||
col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
axpy_ongpu(size, -decay*batch, l.filters_gpu, 1, l.filter_updates_gpu, 1);
|
||||
axpy_ongpu(size, learning_rate/batch, l.filter_updates_gpu, 1, l.filters_gpu, 1);
|
||||
scal_ongpu(size, momentum, l.filter_updates_gpu, 1);
|
||||
}
|
||||
|
||||
void pull_local_layer(local_layer l)
|
||||
{
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
cuda_pull_array(l.filters_gpu, l.filters, size);
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
||||
}
|
||||
|
||||
void push_local_layer(local_layer l)
|
||||
{
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
cuda_push_array(l.filters_gpu, l.filters, size);
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
||||
}
|
||||
#endif
|
Reference in New Issue
Block a user