mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
i hate adam. i hate adam
This commit is contained in:
parent
f9446acb68
commit
1467621453
6
Makefile
6
Makefile
@ -1,6 +1,6 @@
|
||||
GPU=0
|
||||
CUDNN=0
|
||||
OPENCV=0
|
||||
GPU=1
|
||||
CUDNN=1
|
||||
OPENCV=1
|
||||
DEBUG=0
|
||||
|
||||
ARCH= -gencode arch=compute_20,code=[sm_20,sm_21] \
|
||||
|
11
cfg/gru.cfg
11
cfg/gru.cfg
@ -22,17 +22,6 @@ max_batches=10000
|
||||
[gru]
|
||||
batch_normalize=1
|
||||
output = 1024
|
||||
tanh = 1
|
||||
|
||||
[gru]
|
||||
batch_normalize=1
|
||||
output = 1024
|
||||
tanh = 1
|
||||
|
||||
[gru]
|
||||
batch_normalize=1
|
||||
output = 1024
|
||||
tanh = 1
|
||||
|
||||
[connected]
|
||||
output=256
|
||||
|
@ -83,7 +83,7 @@ void train_captcha(char *cfgfile, char *weightfile)
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
printf("%d: %f, %f avg, %lf seconds, %ld images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
|
@ -25,7 +25,7 @@ void train_cifar(char *cfgfile, char *weightfile)
|
||||
float loss = train_network_sgd(net, train, 1);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.95 + loss*.05;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
@ -81,7 +81,7 @@ void train_cifar_distill(char *cfgfile, char *weightfile)
|
||||
float loss = train_network_sgd(net, train, 1);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.95 + loss*.05;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
|
@ -105,7 +105,7 @@ void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
#endif
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
|
@ -128,7 +128,7 @@ void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, i
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
i = get_current_batch(net);
|
||||
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
printf("%ld: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
|
||||
if(i%1000==0){
|
||||
#ifdef GPU
|
||||
if(ngpus != 1) sync_nets(nets, ngpus, 0);
|
||||
|
@ -31,7 +31,7 @@ void train_dice(char *cfgfile, char *weightfile)
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
printf("%d: %f, %f avg, %lf seconds, %ld images\n", i, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if((i % 100) == 0) net.learning_rate *= .1;
|
||||
if(i%100==0){
|
||||
|
@ -169,7 +169,7 @@ void train_go(char *cfgfile, char *weightfile, char *filename, int *gpus, int ng
|
||||
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.95 + loss*.05;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
char buff[256];
|
||||
@ -184,7 +184,7 @@ void train_go(char *cfgfile, char *weightfile, char *filename, int *gpus, int ng
|
||||
}
|
||||
if(get_current_batch(net)%10000 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.backup",backup_directory,base,get_current_batch(net));
|
||||
sprintf(buff, "%s/%s_%ld.backup",backup_directory,base,get_current_batch(net));
|
||||
save_weights(net, buff);
|
||||
}
|
||||
}
|
||||
|
@ -91,7 +91,7 @@ void train_regressor(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
#endif
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
|
@ -182,7 +182,7 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear,
|
||||
if (avg_loss < 0) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
|
||||
int chars = get_current_batch(net)*batch;
|
||||
size_t chars = get_current_batch(net)*batch;
|
||||
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds, %f epochs\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), (float) chars/size);
|
||||
|
||||
for(j = 0; j < streams; ++j){
|
||||
@ -194,12 +194,12 @@ void train_char_rnn(char *cfgfile, char *weightfile, char *filename, int clear,
|
||||
}
|
||||
}
|
||||
|
||||
if(i%1000==0){
|
||||
if(i%10000==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(i%10==0){
|
||||
if(i%100==0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
||||
save_weights(net, buff);
|
||||
@ -409,7 +409,7 @@ void valid_char_rnn(char *cfgfile, char *weightfile, char *seed)
|
||||
input[c] = 0;
|
||||
sum += log(out[next])/log2;
|
||||
c = next;
|
||||
printf("%d Perplexity: %4.4f Word Perplexity: %4.4f\n", count, pow(2, -sum/count), pow(2, -sum/words));
|
||||
printf("%d BPC: %4.4f Perplexity: %4.4f Word Perplexity: %4.4f\n", count, -sum/count, pow(2, -sum/count), pow(2, -sum/words));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -100,7 +100,7 @@ void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus,
|
||||
#endif
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
|
@ -58,7 +58,7 @@ void train_tag(char *cfgfile, char *weightfile, int clear)
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(*net.seen/N > epoch){
|
||||
epoch = *net.seen/N;
|
||||
|
@ -63,11 +63,11 @@ void train_writing(char *cfgfile, char *weightfile)
|
||||
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(get_current_batch(net)%100 == 0){
|
||||
char buff[256];
|
||||
sprintf(buff, "%s/%s_batch_%d.weights", backup_directory, base, get_current_batch(net));
|
||||
sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
|
||||
save_weights(net, buff);
|
||||
}
|
||||
if(*net.seen/N > epoch){
|
||||
|
@ -87,6 +87,18 @@ typedef enum{
|
||||
SSE, MASKED, L1, SMOOTH
|
||||
} COST_TYPE;
|
||||
|
||||
typedef struct{
|
||||
int batch;
|
||||
float learning_rate;
|
||||
float momentum;
|
||||
float decay;
|
||||
int adam;
|
||||
float B1;
|
||||
float B2;
|
||||
float eps;
|
||||
int t;
|
||||
} update_args;
|
||||
|
||||
struct network;
|
||||
typedef struct network network;
|
||||
|
||||
@ -99,10 +111,10 @@ struct layer{
|
||||
COST_TYPE cost_type;
|
||||
void (*forward) (struct layer, struct network);
|
||||
void (*backward) (struct layer, struct network);
|
||||
void (*update) (struct layer, int, float, float, float);
|
||||
void (*update) (struct layer, update_args);
|
||||
void (*forward_gpu) (struct layer, struct network);
|
||||
void (*backward_gpu) (struct layer, struct network);
|
||||
void (*update_gpu) (struct layer, int, float, float, float);
|
||||
void (*update_gpu) (struct layer, update_args);
|
||||
int batch_normalize;
|
||||
int shortcut;
|
||||
int batch;
|
||||
@ -156,12 +168,6 @@ struct layer{
|
||||
int log;
|
||||
int tanh;
|
||||
|
||||
int adam;
|
||||
float B1;
|
||||
float B2;
|
||||
float eps;
|
||||
int t;
|
||||
|
||||
float alpha;
|
||||
float beta;
|
||||
float kappa;
|
||||
@ -395,16 +401,17 @@ typedef enum {
|
||||
typedef struct network{
|
||||
int n;
|
||||
int batch;
|
||||
int *seen;
|
||||
size_t *seen;
|
||||
int *t;
|
||||
float epoch;
|
||||
int subdivisions;
|
||||
float momentum;
|
||||
float decay;
|
||||
layer *layers;
|
||||
float *output;
|
||||
learning_rate_policy policy;
|
||||
|
||||
float learning_rate;
|
||||
float momentum;
|
||||
float decay;
|
||||
float gamma;
|
||||
float scale;
|
||||
float power;
|
||||
@ -648,7 +655,7 @@ void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, flo
|
||||
float get_current_rate(network net);
|
||||
void composite_3d(char *f1, char *f2, char *out, int delta);
|
||||
data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h);
|
||||
int get_current_batch(network net);
|
||||
size_t get_current_batch(network net);
|
||||
void constrain_image(image im);
|
||||
image get_network_image_layer(network net, int i);
|
||||
layer get_network_output_layer(network net);
|
||||
|
@ -80,6 +80,7 @@ void mult_add_into_gpu(int num, float *a, float *b, float *c);
|
||||
void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out);
|
||||
|
||||
void softmax_gpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output);
|
||||
void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t);
|
||||
void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t);
|
||||
|
||||
void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out);
|
||||
|
@ -74,6 +74,19 @@ void add_bias_gpu(float *output, float *biases, int batch, int n, int size)
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
__global__ void backward_bias_conn_kernel(float *bias_updates, float *delta, int batch, int n)
|
||||
{
|
||||
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
if (index >= n) return;
|
||||
int b;
|
||||
float sum = 0;
|
||||
for(b = 0; b < batch; ++b){
|
||||
int i = b*n + index;
|
||||
sum += delta[i];
|
||||
}
|
||||
bias_updates[index] += sum;
|
||||
}
|
||||
|
||||
__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size)
|
||||
{
|
||||
__shared__ float part[BLOCK];
|
||||
@ -94,6 +107,16 @@ __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batc
|
||||
}
|
||||
}
|
||||
|
||||
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
|
||||
{
|
||||
if(size == 1){
|
||||
backward_bias_conn_kernel<<<cuda_gridsize(n), BLOCK>>>(bias_updates, delta, batch, n);
|
||||
}else{
|
||||
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
|
||||
}
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
/*
|
||||
__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta)
|
||||
{
|
||||
@ -136,12 +159,6 @@ void dot_error_gpu(layer l)
|
||||
}
|
||||
*/
|
||||
|
||||
void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size)
|
||||
{
|
||||
backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size);
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
|
||||
__global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
|
||||
{
|
||||
@ -149,7 +166,6 @@ __global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float
|
||||
if (index >= N) return;
|
||||
|
||||
x[index] = x[index] + (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps));
|
||||
//if(index == 0) printf("%f %f %f %f\n", m[index], v[index], (rate * sqrt(1.-pow(B2, t)) / (1.-pow(B1, t)) * m[index] / (sqrt(v[index]) + eps)));
|
||||
}
|
||||
|
||||
extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t)
|
||||
@ -158,6 +174,20 @@ extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2
|
||||
check_error(cudaPeekAtLastError());
|
||||
}
|
||||
|
||||
extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
|
||||
{
|
||||
scal_ongpu(n, B1, m, 1);
|
||||
scal_ongpu(n, B2, v, 1);
|
||||
axpy_ongpu(n, -decay*batch, w, 1, d, 1);
|
||||
|
||||
axpy_ongpu(n, (1-B1), d, 1, m, 1);
|
||||
mul_ongpu(n, d, 1, d, 1);
|
||||
axpy_ongpu(n, (1-B2), d, 1, v, 1);
|
||||
|
||||
adam_gpu(n, w, m, v, B1, B2, rate/batch, eps, t);
|
||||
fill_ongpu(n, 0, d, 1);
|
||||
}
|
||||
|
||||
__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial)
|
||||
{
|
||||
int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
||||
|
@ -54,7 +54,7 @@ void train_compare(char *cfgfile, char *weightfile)
|
||||
float loss = train_network(net, train);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%.3f: %f, %f avg, %lf seconds, %d images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
printf("%.3f: %f, %f avg, %lf seconds, %ld images\n", (float)*net.seen/N, loss, avg_loss, sec(clock()-time), *net.seen);
|
||||
free_data(train);
|
||||
if(i%100 == 0){
|
||||
char buff[256];
|
||||
|
@ -11,10 +11,11 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize)
|
||||
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam)
|
||||
{
|
||||
int i;
|
||||
connected_layer l = {0};
|
||||
layer l = {0};
|
||||
l.learning_rate_scale = 1;
|
||||
l.type = CONNECTED;
|
||||
|
||||
l.inputs = inputs;
|
||||
@ -51,6 +52,14 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
l.biases[i] = 0;
|
||||
}
|
||||
|
||||
if(adam){
|
||||
l.m = calloc(l.inputs*l.outputs, sizeof(float));
|
||||
l.v = calloc(l.inputs*l.outputs, sizeof(float));
|
||||
l.bias_m = calloc(l.outputs, sizeof(float));
|
||||
l.scale_m = calloc(l.outputs, sizeof(float));
|
||||
l.bias_v = calloc(l.outputs, sizeof(float));
|
||||
l.scale_v = calloc(l.outputs, sizeof(float));
|
||||
}
|
||||
if(batch_normalize){
|
||||
l.scales = calloc(outputs, sizeof(float));
|
||||
l.scale_updates = calloc(outputs, sizeof(float));
|
||||
@ -83,6 +92,15 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
|
||||
l.output_gpu = cuda_make_array(l.output, outputs*batch);
|
||||
l.delta_gpu = cuda_make_array(l.delta, outputs*batch);
|
||||
if (adam) {
|
||||
l.m_gpu = cuda_make_array(0, inputs*outputs);
|
||||
l.v_gpu = cuda_make_array(0, inputs*outputs);
|
||||
l.bias_m_gpu = cuda_make_array(0, outputs);
|
||||
l.bias_v_gpu = cuda_make_array(0, outputs);
|
||||
l.scale_m_gpu = cuda_make_array(0, outputs);
|
||||
l.scale_v_gpu = cuda_make_array(0, outputs);
|
||||
}
|
||||
|
||||
if(batch_normalize){
|
||||
l.mean_gpu = cuda_make_array(l.mean, outputs);
|
||||
l.variance_gpu = cuda_make_array(l.variance, outputs);
|
||||
@ -111,8 +129,12 @@ connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVAT
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_connected_layer(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer(layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.outputs, momentum, l.bias_updates, 1);
|
||||
|
||||
@ -126,7 +148,7 @@ void update_connected_layer(connected_layer l, int batch, float learning_rate, f
|
||||
scal_cpu(l.inputs*l.outputs, momentum, l.weight_updates, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer(connected_layer l, network net)
|
||||
void forward_connected_layer(layer l, network net)
|
||||
{
|
||||
fill_cpu(l.outputs*l.batch, 0, l.output, 1);
|
||||
int m = l.batch;
|
||||
@ -144,7 +166,7 @@ void forward_connected_layer(connected_layer l, network net)
|
||||
activate_array(l.output, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer(connected_layer l, network net)
|
||||
void backward_connected_layer(layer l, network net)
|
||||
{
|
||||
gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
|
||||
|
||||
@ -210,7 +232,7 @@ void statistics_connected_layer(layer l)
|
||||
|
||||
#ifdef GPU
|
||||
|
||||
void pull_connected_layer(connected_layer l)
|
||||
void pull_connected_layer(layer l)
|
||||
{
|
||||
cuda_pull_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_pull_array(l.biases_gpu, l.biases, l.outputs);
|
||||
@ -223,7 +245,7 @@ void pull_connected_layer(connected_layer l)
|
||||
}
|
||||
}
|
||||
|
||||
void push_connected_layer(connected_layer l)
|
||||
void push_connected_layer(layer l)
|
||||
{
|
||||
cuda_push_array(l.weights_gpu, l.weights, l.inputs*l.outputs);
|
||||
cuda_push_array(l.biases_gpu, l.biases, l.outputs);
|
||||
@ -236,22 +258,34 @@ void push_connected_layer(connected_layer l)
|
||||
}
|
||||
}
|
||||
|
||||
void update_connected_layer_gpu(connected_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_connected_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
if(a.adam){
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.inputs*l.outputs, batch, a.t);
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t);
|
||||
if(l.scales_gpu){
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.outputs, batch, a.t);
|
||||
}
|
||||
}else{
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.bias_updates_gpu, 1);
|
||||
|
||||
if(l.batch_normalize){
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1);
|
||||
if(l.batch_normalize){
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.scale_updates_gpu, 1, l.scales_gpu, 1);
|
||||
scal_ongpu(l.outputs, momentum, l.scale_updates_gpu, 1);
|
||||
}
|
||||
|
||||
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
||||
}
|
||||
|
||||
axpy_ongpu(l.inputs*l.outputs, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
axpy_ongpu(l.inputs*l.outputs, learning_rate/batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
|
||||
scal_ongpu(l.inputs*l.outputs, momentum, l.weight_updates_gpu, 1);
|
||||
}
|
||||
|
||||
void forward_connected_layer_gpu(connected_layer l, network net)
|
||||
void forward_connected_layer_gpu(layer l, network net)
|
||||
{
|
||||
fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1);
|
||||
|
||||
@ -271,9 +305,9 @@ void forward_connected_layer_gpu(connected_layer l, network net)
|
||||
activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
|
||||
}
|
||||
|
||||
void backward_connected_layer_gpu(connected_layer l, network net)
|
||||
void backward_connected_layer_gpu(layer l, network net)
|
||||
{
|
||||
constrain_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1);
|
||||
constrain_ongpu(l.outputs*l.batch, 5, l.delta_gpu, 1);
|
||||
gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
|
||||
if(l.batch_normalize){
|
||||
backward_batchnorm_layer_gpu(l, net);
|
||||
|
@ -5,20 +5,18 @@
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
typedef layer connected_layer;
|
||||
layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize, int adam);
|
||||
|
||||
connected_layer make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, int batch_normalize);
|
||||
|
||||
void forward_connected_layer(connected_layer layer, network net);
|
||||
void backward_connected_layer(connected_layer layer, network net);
|
||||
void update_connected_layer(connected_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void forward_connected_layer(layer l, network net);
|
||||
void backward_connected_layer(layer l, network net);
|
||||
void update_connected_layer(layer l, update_args a);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_connected_layer_gpu(connected_layer layer, network net);
|
||||
void backward_connected_layer_gpu(connected_layer layer, network net);
|
||||
void update_connected_layer_gpu(connected_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void push_connected_layer(connected_layer layer);
|
||||
void pull_connected_layer(connected_layer layer);
|
||||
void forward_connected_layer_gpu(layer l, network net);
|
||||
void backward_connected_layer_gpu(layer l, network net);
|
||||
void update_connected_layer_gpu(layer l, update_args a);
|
||||
void push_connected_layer(layer l);
|
||||
void pull_connected_layer(layer l);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -263,10 +263,6 @@ void pull_convolutional_layer(convolutional_layer layer)
|
||||
cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
}
|
||||
if (layer.adam){
|
||||
cuda_pull_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_pull_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
||||
}
|
||||
}
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer)
|
||||
@ -280,35 +276,22 @@ void push_convolutional_layer(convolutional_layer layer)
|
||||
cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n);
|
||||
cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n);
|
||||
}
|
||||
if (layer.adam){
|
||||
cuda_push_array(layer.m_gpu, layer.m, layer.c*layer.n*layer.size*layer.size);
|
||||
cuda_push_array(layer.v_gpu, layer.v, layer.c*layer.n*layer.size*layer.size);
|
||||
}
|
||||
}
|
||||
|
||||
void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t)
|
||||
void update_convolutional_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
scal_ongpu(n, B1, m, 1);
|
||||
scal_ongpu(n, B2, v, 1);
|
||||
axpy_ongpu(n, -decay*batch, w, 1, d, 1);
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
axpy_ongpu(n, (1-B1), d, 1, m, 1);
|
||||
mul_ongpu(n, d, 1, d, 1);
|
||||
axpy_ongpu(n, (1-B2), d, 1, v, 1);
|
||||
|
||||
adam_gpu(n, w, m, v, B1, B2, rate/batch, eps, t);
|
||||
fill_ongpu(n, 0, d, 1);
|
||||
}
|
||||
|
||||
void update_convolutional_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
{
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
|
||||
if(l.adam){
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, size, batch, l.t);
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
if(a.adam){
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, size, batch, a.t);
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
|
||||
if(l.scales_gpu){
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
|
||||
}
|
||||
}else{
|
||||
axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
|
@ -234,7 +234,6 @@ convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int
|
||||
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
|
||||
}
|
||||
if(adam){
|
||||
l.adam = 1;
|
||||
l.m = calloc(c*n*size*size, sizeof(float));
|
||||
l.v = calloc(c*n*size*size, sizeof(float));
|
||||
l.bias_m = calloc(n, sizeof(float));
|
||||
@ -507,8 +506,13 @@ void backward_convolutional_layer(convolutional_layer l, network net)
|
||||
}
|
||||
}
|
||||
|
||||
void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_convolutional_layer(convolutional_layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
||||
|
@ -12,7 +12,7 @@ typedef layer convolutional_layer;
|
||||
#ifdef GPU
|
||||
void forward_convolutional_layer_gpu(convolutional_layer layer, network net);
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, network net);
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_convolutional_layer_gpu(convolutional_layer layer, update_args a);
|
||||
|
||||
void push_convolutional_layer(convolutional_layer layer);
|
||||
void pull_convolutional_layer(convolutional_layer layer);
|
||||
@ -28,7 +28,7 @@ void cudnn_convolutional_setup(layer *l);
|
||||
convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam);
|
||||
void resize_convolutional_layer(convolutional_layer *layer, int w, int h);
|
||||
void forward_convolutional_layer(const convolutional_layer layer, network net);
|
||||
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_convolutional_layer(convolutional_layer layer, update_args a);
|
||||
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_weights);
|
||||
void binarize_weights(float *weights, int n, int size, float *binary);
|
||||
void swap_binary(convolutional_layer *l);
|
||||
|
@ -81,11 +81,11 @@ layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int ou
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_crnn_layer(layer l, update_args a)
|
||||
{
|
||||
update_convolutional_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer(*(l.input_layer), a);
|
||||
update_convolutional_layer(*(l.self_layer), a);
|
||||
update_convolutional_layer(*(l.output_layer), a);
|
||||
}
|
||||
|
||||
void forward_crnn_layer(layer l, network net)
|
||||
@ -194,11 +194,11 @@ void push_crnn_layer(layer l)
|
||||
push_convolutional_layer(*(l.output_layer));
|
||||
}
|
||||
|
||||
void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_crnn_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
update_convolutional_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
update_convolutional_layer_gpu(*(l.input_layer), a);
|
||||
update_convolutional_layer_gpu(*(l.self_layer), a);
|
||||
update_convolutional_layer_gpu(*(l.output_layer), a);
|
||||
}
|
||||
|
||||
void forward_crnn_layer_gpu(layer l, network net)
|
||||
|
@ -10,12 +10,12 @@ layer make_crnn_layer(int batch, int h, int w, int c, int hidden_filters, int ou
|
||||
|
||||
void forward_crnn_layer(layer l, network net);
|
||||
void backward_crnn_layer(layer l, network net);
|
||||
void update_crnn_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_crnn_layer(layer l, update_args a);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_crnn_layer_gpu(layer l, network net);
|
||||
void backward_crnn_layer_gpu(layer l, network net);
|
||||
void update_crnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_crnn_layer_gpu(layer l, update_args a);
|
||||
void push_crnn_layer(layer l);
|
||||
void pull_crnn_layer(layer l);
|
||||
#endif
|
||||
|
@ -109,15 +109,20 @@ extern "C" void push_deconvolutional_layer(layer l)
|
||||
}
|
||||
}
|
||||
|
||||
void update_deconvolutional_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_deconvolutional_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
|
||||
if(l.adam){
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, size, batch, l.t);
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
if(a.adam){
|
||||
adam_update_gpu(l.weights_gpu, l.weight_updates_gpu, l.m_gpu, l.v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, size, batch, a.t);
|
||||
adam_update_gpu(l.biases_gpu, l.bias_updates_gpu, l.bias_m_gpu, l.bias_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
|
||||
if(l.scales_gpu){
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, l.B1, l.B2, l.eps, decay, learning_rate, l.n, batch, l.t);
|
||||
adam_update_gpu(l.scales_gpu, l.scale_updates_gpu, l.scale_m_gpu, l.scale_v_gpu, a.B1, a.B2, a.eps, decay, learning_rate, l.n, batch, a.t);
|
||||
}
|
||||
}else{
|
||||
axpy_ongpu(size, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
|
||||
|
@ -79,7 +79,6 @@ layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size
|
||||
l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
|
||||
}
|
||||
if(adam){
|
||||
l.adam = 1;
|
||||
l.m = calloc(c*n*size*size, sizeof(float));
|
||||
l.v = calloc(c*n*size*size, sizeof(float));
|
||||
l.bias_m = calloc(n, sizeof(float));
|
||||
@ -252,8 +251,13 @@ void backward_deconvolutional_layer(layer l, network net)
|
||||
}
|
||||
}
|
||||
|
||||
void update_deconvolutional_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_deconvolutional_layer(layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
int size = l.size*l.size*l.c*l.n;
|
||||
axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
scal_cpu(l.n, momentum, l.bias_updates, 1);
|
||||
|
@ -10,7 +10,7 @@
|
||||
#ifdef GPU
|
||||
void forward_deconvolutional_layer_gpu(layer l, network net);
|
||||
void backward_deconvolutional_layer_gpu(layer l, network net);
|
||||
void update_deconvolutional_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_deconvolutional_layer_gpu(layer l, update_args a);
|
||||
void push_deconvolutional_layer(layer l);
|
||||
void pull_deconvolutional_layer(layer l);
|
||||
#endif
|
||||
@ -18,7 +18,7 @@ void pull_deconvolutional_layer(layer l);
|
||||
layer make_deconvolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int adam);
|
||||
void resize_deconvolutional_layer(layer *l, int h, int w);
|
||||
void forward_deconvolutional_layer(const layer l, network net);
|
||||
void update_deconvolutional_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_deconvolutional_layer(layer l, update_args a);
|
||||
void backward_deconvolutional_layer(layer l, network net);
|
||||
|
||||
#endif
|
||||
|
@ -26,7 +26,7 @@ static void increment_layer(layer *l, int steps)
|
||||
#endif
|
||||
}
|
||||
|
||||
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
|
||||
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize, int adam)
|
||||
{
|
||||
fprintf(stderr, "GRU Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
batch = batch / steps;
|
||||
@ -38,34 +38,34 @@ layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_no
|
||||
|
||||
l.uz = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.uz) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.uz) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.uz->batch = batch;
|
||||
|
||||
l.wz = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wz) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wz) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wz->batch = batch;
|
||||
|
||||
l.ur = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.ur) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.ur) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.ur->batch = batch;
|
||||
|
||||
l.wr = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wr) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wr) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wr->batch = batch;
|
||||
|
||||
|
||||
|
||||
l.uh = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.uh) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.uh) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.uh->batch = batch;
|
||||
|
||||
l.wh = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wh) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wh) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wh->batch = batch;
|
||||
|
||||
l.batch_normalize = batch_normalize;
|
||||
@ -115,11 +115,14 @@ layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_no
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_gru_layer(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.ur), a);
|
||||
update_connected_layer(*(l.uz), a);
|
||||
update_connected_layer(*(l.uh), a);
|
||||
update_connected_layer(*(l.wr), a);
|
||||
update_connected_layer(*(l.wz), a);
|
||||
update_connected_layer(*(l.wh), a);
|
||||
}
|
||||
|
||||
void forward_gru_layer(layer l, network net)
|
||||
@ -212,14 +215,14 @@ void push_gru_layer(layer l)
|
||||
{
|
||||
}
|
||||
|
||||
void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_gru_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer_gpu(*(l.ur), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.uz), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.uh), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wr), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wz), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wh), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.ur), a);
|
||||
update_connected_layer_gpu(*(l.uz), a);
|
||||
update_connected_layer_gpu(*(l.uh), a);
|
||||
update_connected_layer_gpu(*(l.wr), a);
|
||||
update_connected_layer_gpu(*(l.wz), a);
|
||||
update_connected_layer_gpu(*(l.wh), a);
|
||||
}
|
||||
|
||||
void forward_gru_layer_gpu(layer l, network net)
|
||||
|
@ -6,16 +6,16 @@
|
||||
#include "layer.h"
|
||||
#include "network.h"
|
||||
|
||||
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize);
|
||||
layer make_gru_layer(int batch, int inputs, int outputs, int steps, int batch_normalize, int adam);
|
||||
|
||||
void forward_gru_layer(layer l, network state);
|
||||
void backward_gru_layer(layer l, network state);
|
||||
void update_gru_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_gru_layer(layer l, update_args a);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_gru_layer_gpu(layer l, network state);
|
||||
void backward_gru_layer_gpu(layer l, network state);
|
||||
void update_gru_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_gru_layer_gpu(layer l, update_args a);
|
||||
void push_gru_layer(layer l);
|
||||
void pull_gru_layer(layer l);
|
||||
#endif
|
||||
|
@ -164,8 +164,13 @@ void backward_local_layer(local_layer l, network net)
|
||||
}
|
||||
}
|
||||
|
||||
void update_local_layer(local_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_local_layer(local_layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
axpy_cpu(l.outputs, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
|
||||
@ -253,8 +258,13 @@ void backward_local_layer_gpu(local_layer l, network net)
|
||||
}
|
||||
}
|
||||
|
||||
void update_local_layer_gpu(local_layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_local_layer_gpu(local_layer l, update_args a)
|
||||
{
|
||||
float learning_rate = a.learning_rate*l.learning_rate_scale;
|
||||
float momentum = a.momentum;
|
||||
float decay = a.decay;
|
||||
int batch = a.batch;
|
||||
|
||||
int locations = l.out_w*l.out_h;
|
||||
int size = l.size*l.size*l.c*l.n*locations;
|
||||
axpy_ongpu(l.outputs, learning_rate/batch, l.bias_updates_gpu, 1, l.biases_gpu, 1);
|
||||
|
@ -12,7 +12,7 @@ typedef layer local_layer;
|
||||
#ifdef GPU
|
||||
void forward_local_layer_gpu(local_layer layer, network net);
|
||||
void backward_local_layer_gpu(local_layer layer, network net);
|
||||
void update_local_layer_gpu(local_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_local_layer_gpu(local_layer layer, update_args a);
|
||||
|
||||
void push_local_layer(local_layer layer);
|
||||
void pull_local_layer(local_layer layer);
|
||||
@ -22,7 +22,7 @@ local_layer make_local_layer(int batch, int h, int w, int c, int n, int size, in
|
||||
|
||||
void forward_local_layer(const local_layer layer, network net);
|
||||
void backward_local_layer(local_layer layer, network net);
|
||||
void update_local_layer(local_layer layer, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_local_layer(local_layer layer, update_args a);
|
||||
|
||||
void bias_output(float *output, float *biases, int batch, int n, int size);
|
||||
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size);
|
||||
|
@ -26,7 +26,7 @@ static void increment_layer(layer *l, int steps)
|
||||
#endif
|
||||
}
|
||||
|
||||
layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize)
|
||||
layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize, int adam)
|
||||
{
|
||||
fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
batch = batch / steps;
|
||||
@ -38,42 +38,42 @@ layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_n
|
||||
|
||||
l.uf = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.uf) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.uf) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.uf->batch = batch;
|
||||
|
||||
l.wf = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wf) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wf) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wf->batch = batch;
|
||||
|
||||
l.ui = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.ui) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.ui) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.ui->batch = batch;
|
||||
|
||||
l.wi = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wi) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wi) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wi->batch = batch;
|
||||
|
||||
l.ug = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.ug) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.ug) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.ug->batch = batch;
|
||||
|
||||
l.wg = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wg) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wg) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wg->batch = batch;
|
||||
|
||||
l.uo = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.uo) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.uo) = make_connected_layer(batch*steps, inputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.uo->batch = batch;
|
||||
|
||||
l.wo = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.wo) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize);
|
||||
*(l.wo) = make_connected_layer(batch*steps, outputs, outputs, LINEAR, batch_normalize, adam);
|
||||
l.wo->batch = batch;
|
||||
|
||||
l.batch_normalize = batch_normalize;
|
||||
@ -141,16 +141,16 @@ layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_n
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_lstm_layer(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.wf), a);
|
||||
update_connected_layer(*(l.wi), a);
|
||||
update_connected_layer(*(l.wg), a);
|
||||
update_connected_layer(*(l.wo), a);
|
||||
update_connected_layer(*(l.uf), a);
|
||||
update_connected_layer(*(l.ui), a);
|
||||
update_connected_layer(*(l.ug), a);
|
||||
update_connected_layer(*(l.uo), a);
|
||||
}
|
||||
|
||||
void forward_lstm_layer(layer l, network state)
|
||||
@ -383,16 +383,16 @@ void backward_lstm_layer(layer l, network state)
|
||||
}
|
||||
|
||||
#ifdef GPU
|
||||
void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_lstm_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.wf), a);
|
||||
update_connected_layer_gpu(*(l.wi), a);
|
||||
update_connected_layer_gpu(*(l.wg), a);
|
||||
update_connected_layer_gpu(*(l.wo), a);
|
||||
update_connected_layer_gpu(*(l.uf), a);
|
||||
update_connected_layer_gpu(*(l.ui), a);
|
||||
update_connected_layer_gpu(*(l.ug), a);
|
||||
update_connected_layer_gpu(*(l.uo), a);
|
||||
}
|
||||
|
||||
void forward_lstm_layer_gpu(layer l, network state)
|
||||
|
@ -6,15 +6,15 @@
|
||||
#include "network.h"
|
||||
#define USET
|
||||
|
||||
layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize);
|
||||
layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize, int adam);
|
||||
|
||||
void forward_lstm_layer(layer l, network net);
|
||||
void update_lstm_layer(layer l, int batch, float learning, float momentum, float decay);
|
||||
void update_lstm_layer(layer l, update_args a);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_lstm_layer_gpu(layer l, network net);
|
||||
void backward_lstm_layer_gpu(layer l, network net);
|
||||
void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_lstm_layer_gpu(layer l, update_args a);
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -65,9 +65,9 @@ network *load_network_p(char *cfg, char *weights, int clear)
|
||||
return net;
|
||||
}
|
||||
|
||||
int get_current_batch(network net)
|
||||
size_t get_current_batch(network net)
|
||||
{
|
||||
int batch_num = (*net.seen)/(net.batch*net.subdivisions);
|
||||
size_t batch_num = (*net.seen)/(net.batch*net.subdivisions);
|
||||
return batch_num;
|
||||
}
|
||||
|
||||
@ -84,7 +84,7 @@ void reset_momentum(network net)
|
||||
|
||||
float get_current_rate(network net)
|
||||
{
|
||||
int batch_num = get_current_batch(net);
|
||||
size_t batch_num = get_current_batch(net);
|
||||
int i;
|
||||
float rate;
|
||||
if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power);
|
||||
@ -174,6 +174,7 @@ network make_network(int n)
|
||||
net.n = n;
|
||||
net.layers = calloc(net.n, sizeof(layer));
|
||||
net.seen = calloc(1, sizeof(int));
|
||||
net.t = calloc(1, sizeof(int));
|
||||
net.cost = calloc(1, sizeof(float));
|
||||
return net;
|
||||
}
|
||||
@ -199,12 +200,22 @@ void forward_network(network net)
|
||||
void update_network(network net)
|
||||
{
|
||||
int i;
|
||||
int update_batch = net.batch*net.subdivisions;
|
||||
float rate = get_current_rate(net);
|
||||
update_args a = {0};
|
||||
a.batch = net.batch*net.subdivisions;
|
||||
a.learning_rate = get_current_rate(net);
|
||||
a.momentum = net.momentum;
|
||||
a.decay = net.decay;
|
||||
a.adam = net.adam;
|
||||
a.B1 = net.B1;
|
||||
a.B2 = net.B2;
|
||||
a.eps = net.eps;
|
||||
++*net.t;
|
||||
a.t = *net.t;
|
||||
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
if(l.update){
|
||||
l.update(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay);
|
||||
l.update(l, a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -81,13 +81,22 @@ void update_network_gpu(network net)
|
||||
{
|
||||
cuda_set_device(net.gpu_index);
|
||||
int i;
|
||||
int update_batch = net.batch*net.subdivisions;
|
||||
float rate = get_current_rate(net);
|
||||
update_args a = {0};
|
||||
a.batch = net.batch*net.subdivisions;
|
||||
a.learning_rate = get_current_rate(net);
|
||||
a.momentum = net.momentum;
|
||||
a.decay = net.decay;
|
||||
a.adam = net.adam;
|
||||
a.B1 = net.B1;
|
||||
a.B2 = net.B2;
|
||||
a.eps = net.eps;
|
||||
++*net.t;
|
||||
a.t = (*net.t);
|
||||
|
||||
for(i = 0; i < net.n; ++i){
|
||||
layer l = net.layers[i];
|
||||
l.t = get_current_batch(net);
|
||||
if(l.update_gpu){
|
||||
l.update_gpu(l, update_batch, rate*l.learning_rate_scale, net.momentum, net.decay);
|
||||
l.update_gpu(l, a);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
40
src/parser.c
40
src/parser.c
@ -191,11 +191,6 @@ convolutional_layer parse_convolutional(list *options, size_params params)
|
||||
convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,padding,activation, batch_normalize, binary, xnor, params.net.adam);
|
||||
layer.flipped = option_find_int_quiet(options, "flipped", 0);
|
||||
layer.dot = option_find_float_quiet(options, "dot", 0);
|
||||
if(params.net.adam){
|
||||
layer.B1 = params.net.B1;
|
||||
layer.B2 = params.net.B2;
|
||||
layer.eps = params.net.eps;
|
||||
}
|
||||
|
||||
return layer;
|
||||
}
|
||||
@ -224,7 +219,7 @@ layer parse_rnn(list *options, size_params params)
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
int logistic = option_find_int_quiet(options, "logistic", 0);
|
||||
|
||||
layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
|
||||
layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic, params.net.adam);
|
||||
|
||||
l.shortcut = option_find_int_quiet(options, "shortcut", 0);
|
||||
|
||||
@ -236,7 +231,7 @@ layer parse_gru(list *options, size_params params)
|
||||
int output = option_find_int(options, "output",1);
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
|
||||
layer l = make_gru_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net.adam);
|
||||
l.tanh = option_find_int_quiet(options, "tanh", 0);
|
||||
|
||||
return l;
|
||||
@ -247,21 +242,20 @@ layer parse_lstm(list *options, size_params params)
|
||||
int output = option_find_int(options, "output", 1);
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
layer l = make_lstm_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize);
|
||||
layer l = make_lstm_layer(params.batch, params.inputs, output, params.time_steps, batch_normalize, params.net.adam);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
connected_layer parse_connected(list *options, size_params params)
|
||||
layer parse_connected(list *options, size_params params)
|
||||
{
|
||||
int output = option_find_int(options, "output",1);
|
||||
char *activation_s = option_find_str(options, "activation", "logistic");
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
|
||||
|
||||
connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize);
|
||||
|
||||
return layer;
|
||||
layer l = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize, params.net.adam);
|
||||
return l;
|
||||
}
|
||||
|
||||
softmax_layer parse_softmax(list *options, size_params params)
|
||||
@ -567,7 +561,7 @@ void parse_net_options(list *options, network *net)
|
||||
if(net->adam){
|
||||
net->B1 = option_find_float(options, "B1", .9);
|
||||
net->B2 = option_find_float(options, "B2", .999);
|
||||
net->eps = option_find_float(options, "eps", .00000001);
|
||||
net->eps = option_find_float(options, "eps", .0000001);
|
||||
}
|
||||
|
||||
net->h = option_find_int_quiet(options, "height",0);
|
||||
@ -855,10 +849,6 @@ void save_convolutional_weights(layer l, FILE *fp)
|
||||
fwrite(l.rolling_variance, sizeof(float), l.n, fp);
|
||||
}
|
||||
fwrite(l.weights, sizeof(float), num, fp);
|
||||
if(l.adam){
|
||||
//fwrite(l.m, sizeof(float), num, fp);
|
||||
//fwrite(l.v, sizeof(float), num, fp);
|
||||
}
|
||||
}
|
||||
|
||||
void save_batchnorm_weights(layer l, FILE *fp)
|
||||
@ -901,12 +891,12 @@ void save_weights_upto(network net, char *filename, int cutoff)
|
||||
if(!fp) file_error(filename);
|
||||
|
||||
int major = 0;
|
||||
int minor = 1;
|
||||
int minor = 2;
|
||||
int revision = 0;
|
||||
fwrite(&major, sizeof(int), 1, fp);
|
||||
fwrite(&minor, sizeof(int), 1, fp);
|
||||
fwrite(&revision, sizeof(int), 1, fp);
|
||||
fwrite(net.seen, sizeof(int), 1, fp);
|
||||
fwrite(net.seen, sizeof(size_t), 1, fp);
|
||||
|
||||
int i;
|
||||
for(i = 0; i < net.n && i < cutoff; ++i){
|
||||
@ -1068,10 +1058,6 @@ void load_convolutional_weights(layer l, FILE *fp)
|
||||
}
|
||||
}
|
||||
fread(l.weights, sizeof(float), num, fp);
|
||||
if(l.adam){
|
||||
//fread(l.m, sizeof(float), num, fp);
|
||||
//fread(l.v, sizeof(float), num, fp);
|
||||
}
|
||||
//if(l.c == 3) scal_cpu(num, 1./256, l.weights, 1);
|
||||
if (l.flipped) {
|
||||
transpose_matrix(l.weights, l.c*l.size*l.size, l.n);
|
||||
@ -1103,7 +1089,13 @@ void load_weights_upto(network *net, char *filename, int start, int cutoff)
|
||||
fread(&major, sizeof(int), 1, fp);
|
||||
fread(&minor, sizeof(int), 1, fp);
|
||||
fread(&revision, sizeof(int), 1, fp);
|
||||
fread(net->seen, sizeof(int), 1, fp);
|
||||
if ((major*10 + minor) >= 2){
|
||||
fread(net->seen, sizeof(size_t), 1, fp);
|
||||
} else {
|
||||
int iseen = 0;
|
||||
fread(&iseen, sizeof(int), 1, fp);
|
||||
*net->seen = iseen;
|
||||
}
|
||||
int transpose = (major > 1000) || (minor > 1000);
|
||||
|
||||
int i;
|
||||
|
@ -26,7 +26,7 @@ static void increment_layer(layer *l, int steps)
|
||||
#endif
|
||||
}
|
||||
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log)
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log, int adam)
|
||||
{
|
||||
fprintf(stderr, "RNN Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
batch = batch / steps;
|
||||
@ -41,17 +41,17 @@ layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps,
|
||||
|
||||
l.input_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize);
|
||||
*(l.input_layer) = make_connected_layer(batch*steps, inputs, hidden, activation, batch_normalize, adam);
|
||||
l.input_layer->batch = batch;
|
||||
|
||||
l.self_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize);
|
||||
*(l.self_layer) = make_connected_layer(batch*steps, hidden, hidden, (log==2)?LOGGY:(log==1?LOGISTIC:activation), batch_normalize, adam);
|
||||
l.self_layer->batch = batch;
|
||||
|
||||
l.output_layer = malloc(sizeof(layer));
|
||||
fprintf(stderr, "\t\t");
|
||||
*(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize);
|
||||
*(l.output_layer) = make_connected_layer(batch*steps, hidden, outputs, activation, batch_normalize, adam);
|
||||
l.output_layer->batch = batch;
|
||||
|
||||
l.outputs = outputs;
|
||||
@ -73,11 +73,11 @@ layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps,
|
||||
return l;
|
||||
}
|
||||
|
||||
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_rnn_layer(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer(*(l.input_layer), a);
|
||||
update_connected_layer(*(l.self_layer), a);
|
||||
update_connected_layer(*(l.output_layer), a);
|
||||
}
|
||||
|
||||
void forward_rnn_layer(layer l, network net)
|
||||
@ -187,11 +187,11 @@ void push_rnn_layer(layer l)
|
||||
push_connected_layer(*(l.output_layer));
|
||||
}
|
||||
|
||||
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay)
|
||||
void update_rnn_layer_gpu(layer l, update_args a)
|
||||
{
|
||||
update_connected_layer_gpu(*(l.input_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.self_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.output_layer), batch, learning_rate, momentum, decay);
|
||||
update_connected_layer_gpu(*(l.input_layer), a);
|
||||
update_connected_layer_gpu(*(l.self_layer), a);
|
||||
update_connected_layer_gpu(*(l.output_layer), a);
|
||||
}
|
||||
|
||||
void forward_rnn_layer_gpu(layer l, network net)
|
||||
|
@ -7,16 +7,16 @@
|
||||
#include "network.h"
|
||||
#define USET
|
||||
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log);
|
||||
layer make_rnn_layer(int batch, int inputs, int hidden, int outputs, int steps, ACTIVATION activation, int batch_normalize, int log, int adam);
|
||||
|
||||
void forward_rnn_layer(layer l, network net);
|
||||
void backward_rnn_layer(layer l, network net);
|
||||
void update_rnn_layer(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_rnn_layer(layer l, update_args a);
|
||||
|
||||
#ifdef GPU
|
||||
void forward_rnn_layer_gpu(layer l, network net);
|
||||
void backward_rnn_layer_gpu(layer l, network net);
|
||||
void update_rnn_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay);
|
||||
void update_rnn_layer_gpu(layer l, update_args a);
|
||||
void push_rnn_layer(layer l);
|
||||
void pull_rnn_layer(layer l);
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user