im2col slightly faster

This commit is contained in:
Joseph Redmon 2014-10-29 23:26:41 -07:00
parent af4e4f92dc
commit 1c0fd9bb47
9 changed files with 115 additions and 63 deletions

View File

@ -64,6 +64,11 @@ cl_kernel get_scal_kernel()
void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY)
{
axpy_ongpu_offset(N,ALPHA,X,0,INCX,Y,0,INCY);
}
void axpy_ongpu_offset(int N, float ALPHA, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY)
{
cl_setup();
cl_kernel kernel = get_axpy_kernel();
@ -73,8 +78,10 @@ void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY)
cl.error = clSetKernelArg(kernel, i++, sizeof(N), (void*) &N);
cl.error = clSetKernelArg(kernel, i++, sizeof(ALPHA), (void*) &ALPHA);
cl.error = clSetKernelArg(kernel, i++, sizeof(X), (void*) &X);
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFX), (void*) &OFFX);
cl.error = clSetKernelArg(kernel, i++, sizeof(INCX), (void*) &INCX);
cl.error = clSetKernelArg(kernel, i++, sizeof(Y), (void*) &Y);
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFY), (void*) &OFFY);
cl.error = clSetKernelArg(kernel, i++, sizeof(INCY), (void*) &INCY);
check_error(cl);
@ -85,6 +92,10 @@ void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY)
}
void copy_ongpu(int N, cl_mem X, int INCX, cl_mem Y, int INCY)
{
copy_ongpu_offset(N,X,0,INCX,Y,0,INCY);
}
void copy_ongpu_offset(int N, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY)
{
cl_setup();
cl_kernel kernel = get_copy_kernel();
@ -93,8 +104,10 @@ void copy_ongpu(int N, cl_mem X, int INCX, cl_mem Y, int INCY)
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(N), (void*) &N);
cl.error = clSetKernelArg(kernel, i++, sizeof(X), (void*) &X);
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFX), (void*) &OFFX);
cl.error = clSetKernelArg(kernel, i++, sizeof(INCX), (void*) &INCX);
cl.error = clSetKernelArg(kernel, i++, sizeof(Y), (void*) &Y);
cl.error = clSetKernelArg(kernel, i++, sizeof(OFFY), (void*) &OFFY);
cl.error = clSetKernelArg(kernel, i++, sizeof(INCY), (void*) &INCY);
check_error(cl);

View File

@ -1,7 +1,7 @@
__kernel void axpy(int N, float ALPHA, __global float *X, int INCX, __global float *Y, int INCY)
__kernel void axpy(int N, float ALPHA, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
{
int i = get_global_id(0);
Y[i*INCY] += ALPHA*X[i*INCX];
Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX];
}
__kernel void scal(int N, float ALPHA, __global float *X, int INCX)
@ -10,9 +10,9 @@ __kernel void scal(int N, float ALPHA, __global float *X, int INCX)
X[i*INCX] *= ALPHA;
}
__kernel void copy(int N, __global float *X, int INCX, __global float *Y, int INCY)
__kernel void copy(int N, __global float *X, int OFFX, int INCX, __global float *Y, int OFFY, int INCY)
{
int i = get_global_id(0);
Y[i*INCY] = X[i*INCX];
Y[i*INCY + OFFY] = X[i*INCX + OFFX];
}

View File

@ -308,10 +308,10 @@ void train_assira()
void train_imagenet()
{
network net = parse_network_cfg("/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_870.cfg");
network net = parse_network_cfg("cfg/imagenet_backup_slowest_2340.cfg");
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = 1000/net.batch+1;
srand(986987);
srand(6472345);
int i = 0;
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
list *plist = get_paths("/data/imagenet/cls.train.list");
@ -332,7 +332,7 @@ void train_imagenet()
free_data(train);
if(i%10==0){
char buff[256];
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_larger_%d.cfg", i);
sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_small_%d.cfg", i);
save_network(net, buff);
}
}
@ -397,7 +397,7 @@ void test_imagenet()
void test_visualize()
{
network net = parse_network_cfg("cfg/imagenet_test.cfg");
network net = parse_network_cfg("cfg/imagenet.cfg");
visualize_network(net);
cvWaitKey(0);
}
@ -991,7 +991,7 @@ void test_gpu_net()
translate_data_rows(train, -144);
translate_data_rows(test, -144);
int count = 0;
int iters = 10000/net.batch;
int iters = 1000/net.batch;
while(++count <= 5){
clock_t start = clock(), end;
float loss = train_network_sgd(net, train, iters);
@ -999,6 +999,7 @@ void test_gpu_net()
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
#ifdef GPU
count = 0;
srand(222222);
net = parse_network_cfg("cfg/nist.cfg");
@ -1009,6 +1010,7 @@ void test_gpu_net()
float test_acc = network_accuracy(net, test);
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
}
#endif
}
@ -1020,13 +1022,12 @@ int main(int argc, char *argv[])
}
if(0==strcmp(argv[1], "train")) train_imagenet();
else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
else if(0==strcmp(argv[1], "test")) test_imagenet();
else if(0==strcmp(argv[1], "visualize")) test_visualize();
#ifdef GPU
else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
else if(0==strcmp(argv[1], "test")) test_gpu_net();
//test_gpu_blas();
//train_imagenet_small();
//test_imagenet();
//train_nist();
//test_visualize();
#endif
fprintf(stderr, "Success!\n");
return 0;
}

View File

@ -135,9 +135,7 @@ void forward_connected_layer_gpu(connected_layer layer, cl_mem input)
{
int i;
for(i = 0; i < layer.batch; ++i){
cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs);
copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1);
clReleaseMemObject(sub);
copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1);
}
int m = layer.batch;
int k = layer.inputs;
@ -154,9 +152,7 @@ void backward_connected_layer_gpu(connected_layer layer, cl_mem input, cl_mem de
int i;
gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl);
for(i = 0; i < layer.batch; ++i){
cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs);
axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1);
clReleaseMemObject(sub);
axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1);
}
int m = layer.inputs;
int k = layer.batch;

View File

@ -51,12 +51,23 @@ void im2col_cpu(float* data_im, int batch,
#include "opencl.h"
#include <math.h>
cl_kernel get_im2col_kernel()
cl_kernel get_im2col_pad_kernel()
{
static int init = 0;
static cl_kernel im2col_kernel;
if(!init){
im2col_kernel = get_kernel("src/im2col.cl", "im2col", 0);
im2col_kernel = get_kernel("src/im2col.cl", "im2col_pad", 0);
init = 1;
}
return im2col_kernel;
}
cl_kernel get_im2col_nopad_kernel()
{
static int init = 0;
static cl_kernel im2col_kernel;
if(!init){
im2col_kernel = get_kernel("src/im2col.cl", "im2col_nopad", 0);
init = 1;
}
return im2col_kernel;
@ -68,32 +79,34 @@ void im2col_ongpu(cl_mem data_im, int batch,
int ksize, int stride, int pad, cl_mem data_col)
{
cl_setup();
cl_kernel im2col_kernel = get_im2col_kernel();
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(data_im), (void*) &data_im);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(batch), (void*) &batch);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(channels), (void*) &channels);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(height), (void*) &height);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(width), (void*) &width);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(ksize), (void*) &ksize);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(stride), (void*) &stride);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(pad), (void*) &pad);
cl.error = clSetKernelArg(im2col_kernel, i++, sizeof(data_col), (void*) &data_col);
check_error(cl);
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
cl_kernel kernel = get_im2col_nopad_kernel();
if (pad){
height_col = 1 + (height-1) / stride;
width_col = 1 + (width-1) / stride;
kernel = get_im2col_pad_kernel();
}
cl_command_queue queue = cl.queue;
cl_uint i = 0;
cl.error = clSetKernelArg(kernel, i++, sizeof(data_im), (void*) &data_im);
cl.error = clSetKernelArg(kernel, i++, sizeof(batch), (void*) &batch);
cl.error = clSetKernelArg(kernel, i++, sizeof(channels), (void*) &channels);
cl.error = clSetKernelArg(kernel, i++, sizeof(height), (void*) &height);
cl.error = clSetKernelArg(kernel, i++, sizeof(width), (void*) &width);
cl.error = clSetKernelArg(kernel, i++, sizeof(ksize), (void*) &ksize);
cl.error = clSetKernelArg(kernel, i++, sizeof(stride), (void*) &stride);
cl.error = clSetKernelArg(kernel, i++, sizeof(data_col), (void*) &data_col);
check_error(cl);
size_t global_size = batch*channels_col*height_col*width_col;
clEnqueueNDRangeKernel(queue, im2col_kernel, 1, 0,
clEnqueueNDRangeKernel(queue, kernel, 1, 0,
&global_size, 0, 0, 0, 0);
check_error(cl);
}

View File

@ -1,28 +1,17 @@
float im2col_get_pixel(__global float *im, int height, int width, int channels,
int batch, int row, int col, int channel, int pad)
{
row -= pad;
col -= pad;
if (row < 0 || col < 0 || row >= height || col >= width) return 0;
int index = col + width*(row + height*(channel+batch*channels));
return im[index];
}
__kernel void im2col(__global float *data_im, int batch,
__kernel void im2col_pad(__global float *im, int batch,
int channels, int height, int width,
int ksize, int stride, int pad, __global float *data_col)
int ksize, int stride, __global float *data_col)
{
int c,h,w,b;
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int height_col = 1 + (height-1) / stride;
int width_col = 1 + (width-1) / stride;
int channels_col = channels * ksize * ksize;
if (pad){
height_col = 1 + (height-1) / stride;
width_col = 1 + (width-1) / stride;
pad = ksize/2;
}
int pad = ksize/2;
int id = get_global_id(0);
int col_index = id;
w = id % width_col;
id /= width_col;
h = id % height_col;
@ -35,9 +24,45 @@ __kernel void im2col(__global float *data_im, int batch,
int col_size = height_col*width_col*channels_col;
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int c_im = c / ksize / ksize;
int im_channel = c / ksize / ksize;
int im_row = h_offset + h * stride - pad;
int im_col = w_offset + w * stride - pad;
int im_index = im_col + width*(im_row + height*(im_channel+batch*channels));
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}
__kernel void im2col_nopad(__global float *im, int batch,
int channels, int height, int width,
int ksize, int stride, __global float *data_col)
{
int c,h,w,b;
int height_col = (height - ksize) / stride + 1;
int width_col = (width - ksize) / stride + 1;
int channels_col = channels * ksize * ksize;
int id = get_global_id(0);
int col_index = id;
w = id % width_col;
id /= width_col;
h = id % height_col;
id /= height_col;
c = id % channels_col;
id /= channels_col;
b = id % batch;
id /= batch;
int col_size = height_col*width_col*channels_col;
int w_offset = c % ksize;
int h_offset = (c / ksize) % ksize;
int im_channel = c / ksize / ksize;
int im_row = h_offset + h * stride;
int im_col = w_offset + w * stride;
int col_index = (c * height_col + h) * width_col + w + b*col_size;
data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, b, im_row, im_col, c_im, pad);
int im_index = im_col + width*(im_row + height*(im_channel+batch*channels));
float val = (im_row < 0 || im_col < 0 || im_row >= height || im_col >= width) ? 0 : im[im_index];
data_col[col_index] = val;
}

View File

@ -738,7 +738,7 @@ image collapse_images_horz(image *ims, int n)
void show_images(image *ims, int n, char *window)
{
image m = collapse_images_vert(ims, n);
//save_image(m, window);
save_image(m, window);
show_image(m, window);
free_image(m);
}

View File

@ -11,7 +11,9 @@ void time_random_matrix(int TA, int TB, int m, int k, int n);
#ifdef GPU
void axpy_ongpu(int N, float ALPHA, cl_mem X, int INCX, cl_mem Y, int INCY);
void axpy_ongpu_offset(int N, float ALPHA, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY);
void copy_ongpu(int N, cl_mem X, int INCX, cl_mem Y, int INCY);
void copy_ongpu_offset(int N, cl_mem X, int OFFX, int INCX, cl_mem Y, int OFFY, int INCY);
void scal_ongpu(int N, float ALPHA, cl_mem X, int INCX);
void im2col_ongpu(cl_mem data_im, int batch,
int channels, int height, int width,

View File

@ -38,7 +38,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
//printf("start\n");
int i;
for(i = 0; i < net.n; ++i){
//clock_t time = clock();
clock_t time = clock();
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
forward_convolutional_layer_gpu(layer, input);
@ -63,7 +63,7 @@ void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
forward_softmax_layer_gpu(layer, input);
input = layer.output_cl;
}
//printf("%d %f\n", i, sec(clock()-time));
printf("%d %f\n", i, sec(clock()-time));
/*
else if(net.types[i] == CROP){
crop_layer layer = *(crop_layer *)net.layers[i];
@ -85,6 +85,7 @@ void backward_network_gpu(network net, cl_mem input)
cl_mem prev_input;
cl_mem prev_delta;
for(i = net.n-1; i >= 0; --i){
clock_t time = clock();
if(i == 0){
prev_input = input;
prev_delta = 0;
@ -112,6 +113,7 @@ void backward_network_gpu(network net, cl_mem input)
softmax_layer layer = *(softmax_layer *)net.layers[i];
backward_softmax_layer_gpu(layer, prev_delta);
}
printf("back: %d %f\n", i, sec(clock()-time));
}
}