Stable on MNIST, about to change a lot

This commit is contained in:
Joseph Redmon 2014-01-23 11:24:37 -08:00
parent ad9dbfe164
commit 1d53b6414e
5 changed files with 33 additions and 11 deletions

View File

@ -10,10 +10,6 @@ activation=ramp
[maxpool] [maxpool]
stride=2 stride=2
[conn]
output = 100
activation=ramp
[conn] [conn]
output = 2 output = 2
activation=ramp activation=ramp

View File

@ -2,7 +2,7 @@
width=28 width=28
height=28 height=28
channels=1 channels=1
filters=5 filters=20
size=5 size=5
stride=1 stride=1
activation=ramp activation=ramp
@ -20,7 +20,7 @@ activation=ramp
stride=2 stride=2
[conn] [conn]
output = 100 output = 500
activation=ramp activation=ramp
[conn] [conn]

View File

@ -187,6 +187,24 @@ double train_network_sgd(network net, data d, int n, double step, double momentu
} }
return (double)correct/n; return (double)correct/n;
} }
double train_network_batch(network net, data d, int n, double step, double momentum,double decay)
{
int i;
int correct = 0;
for(i = 0; i < n; ++i){
int index = rand()%d.X.rows;
double *x = d.X.vals[index];
double *y = d.y.vals[index];
forward_network(net, x);
int class = get_predicted_class_network(net);
backward_network(net, x, y);
correct += (y[class]?1:0);
}
update_network(net, step, momentum, decay);
return (double)correct/n;
}
void train_network(network net, data d, double step, double momentum, double decay) void train_network(network net, data d, double step, double momentum, double decay)
{ {

View File

@ -25,6 +25,7 @@ void forward_network(network net, double *input);
void backward_network(network net, double *input, double *truth); void backward_network(network net, double *input, double *truth);
void update_network(network net, double step, double momentum, double decay); void update_network(network net, double step, double momentum, double decay);
double train_network_sgd(network net, data d, int n, double step, double momentum,double decay); double train_network_sgd(network net, data d, int n, double step, double momentum,double decay);
double train_network_batch(network net, data d, int n, double step, double momentum,double decay);
void train_network(network net, data d, double step, double momentum, double decay); void train_network(network net, data d, double step, double momentum, double decay);
matrix network_predict_data(network net, data test); matrix network_predict_data(network net, data test);
double network_accuracy(network net, data d); double network_accuracy(network net, data d);

View File

@ -184,9 +184,12 @@ void test_full()
srand(0); srand(0);
int i = 0; int i = 0;
char *labels[] = {"cat","dog"}; char *labels[] = {"cat","dog"};
double lr = .00001;
double momentum = .9;
double decay = 0.01;
while(i++ < 1000 || 1){ while(i++ < 1000 || 1){
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
train_network(net, train, .0005, 0, 0); train_network(net, train, lr, momentum, decay);
free_data(train); free_data(train);
printf("Round %d\n", i); printf("Round %d\n", i);
} }
@ -206,9 +209,13 @@ void test_nist()
double lr = .0005; double lr = .0005;
double momentum = .9; double momentum = .9;
double decay = 0.01; double decay = 0.01;
clock_t start = clock(), end;
while(++count <= 1000){ while(++count <= 1000){
double acc = train_network_sgd(net, train, 1000, lr, momentum, decay); double acc = train_network_sgd(net, train, 6400, lr, momentum, decay);
printf("Training Accuracy: %lf, Params: %f %f %f\n", acc, lr, momentum, decay); printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, 1.-acc, lr, momentum, decay);
end = clock();
printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
start=end;
visualize_network(net); visualize_network(net);
cvWaitKey(100); cvWaitKey(100);
//lr /= 2; //lr /= 2;
@ -334,8 +341,8 @@ int main()
{ {
//test_kernel_update(); //test_kernel_update();
//test_split(); //test_split();
test_ensemble(); //test_ensemble();
//test_nist(); test_nist();
//test_full(); //test_full();
//test_random_preprocess(); //test_random_preprocess();
//test_random_classify(); //test_random_classify();