mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Added yolov3-tiny-prn.cfg and enet-coco.cfg (EfficientNetb0-Yolo- 45.5% mAP@0.5 - 3.7 BFlops) https://github.com/WongKinYiu/PartialResidualNetworks
This commit is contained in:
@ -63,12 +63,18 @@ There are weights-file for different cfg-files (smaller size -> faster speed & l
|
|||||||
* `yolov3-spp.cfg` (240 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-spp.weights
|
* `yolov3-spp.cfg` (240 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-spp.weights
|
||||||
* `yolov3.cfg` (236 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
|
* `yolov3.cfg` (236 MB COCO **Yolo v3**) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov3.weights
|
||||||
* `yolov3-tiny.cfg` (34 MB COCO **Yolo v3 tiny**) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights
|
* `yolov3-tiny.cfg` (34 MB COCO **Yolo v3 tiny**) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov3-tiny.weights
|
||||||
|
* `enet-coco.cfg` (EfficientNetb0-Yolo- 45.5% mAP@0.5 - 3.7 BFlops) [enetb0-coco_final.weights](https://drive.google.com/file/d/1FlHeQjWEQVJt0ay1PVsiuuMzmtNyv36m/view) and `yolov3-tiny-prn.cfg` (33.1% mAP@0.5 - 3.5 BFlops - [more](https://github.com/WongKinYiu/PartialResidualNetworks))
|
||||||
|
|
||||||
|
<details><summary><b>CLICK ME</b> - Yolo v2 models</summary>
|
||||||
|
|
||||||
* `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
|
* `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
|
||||||
* `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
|
* `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
|
||||||
* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
|
* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
|
||||||
* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
|
* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
|
||||||
* `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
|
* `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
Put it near compiled: darknet.exe
|
Put it near compiled: darknet.exe
|
||||||
|
|
||||||
You can get cfg-files by path: `darknet/cfg/`
|
You can get cfg-files by path: `darknet/cfg/`
|
||||||
|
1072
build/darknet/x64/cfg/enet-coco.cfg
Normal file
1072
build/darknet/x64/cfg/enet-coco.cfg
Normal file
File diff suppressed because it is too large
Load Diff
199
build/darknet/x64/cfg/yolov3-tiny-prn.cfg
Normal file
199
build/darknet/x64/cfg/yolov3-tiny-prn.cfg
Normal file
@ -0,0 +1,199 @@
|
|||||||
|
[net]
|
||||||
|
# Testing
|
||||||
|
batch=1
|
||||||
|
subdivisions=1
|
||||||
|
# Training
|
||||||
|
#batch=64
|
||||||
|
#subdivisions=8
|
||||||
|
width=416
|
||||||
|
height=416
|
||||||
|
channels=3
|
||||||
|
momentum=0.9
|
||||||
|
decay=0.0005
|
||||||
|
angle=0
|
||||||
|
saturation = 1.5
|
||||||
|
exposure = 1.5
|
||||||
|
hue=.1
|
||||||
|
|
||||||
|
learning_rate=0.001
|
||||||
|
burn_in=1000
|
||||||
|
max_batches = 500200
|
||||||
|
policy=steps
|
||||||
|
steps=400000,450000
|
||||||
|
scales=.1,.1
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=16
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=32
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=1
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-3
|
||||||
|
|
||||||
|
###########
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=255
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 3,4,5
|
||||||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||||||
|
classes=80
|
||||||
|
num=6
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -4
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[upsample]
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=8
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-3
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=8
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=255
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 1,2,3
|
||||||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||||||
|
classes=80
|
||||||
|
num=6
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
1072
cfg/enet-coco.cfg
Normal file
1072
cfg/enet-coco.cfg
Normal file
File diff suppressed because it is too large
Load Diff
199
cfg/yolov3-tiny-prn.cfg
Normal file
199
cfg/yolov3-tiny-prn.cfg
Normal file
@ -0,0 +1,199 @@
|
|||||||
|
[net]
|
||||||
|
# Testing
|
||||||
|
batch=1
|
||||||
|
subdivisions=1
|
||||||
|
# Training
|
||||||
|
#batch=64
|
||||||
|
#subdivisions=8
|
||||||
|
width=416
|
||||||
|
height=416
|
||||||
|
channels=3
|
||||||
|
momentum=0.9
|
||||||
|
decay=0.0005
|
||||||
|
angle=0
|
||||||
|
saturation = 1.5
|
||||||
|
exposure = 1.5
|
||||||
|
hue=.1
|
||||||
|
|
||||||
|
learning_rate=0.001
|
||||||
|
burn_in=1000
|
||||||
|
max_batches = 500200
|
||||||
|
policy=steps
|
||||||
|
steps=400000,450000
|
||||||
|
scales=.1,.1
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=16
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=32
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=64
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[maxpool]
|
||||||
|
size=2
|
||||||
|
stride=1
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=512
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-3
|
||||||
|
|
||||||
|
###########
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=256
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-2
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=255
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 3,4,5
|
||||||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||||||
|
classes=80
|
||||||
|
num=6
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
||||||
|
|
||||||
|
[route]
|
||||||
|
layers = -4
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[upsample]
|
||||||
|
stride=2
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=8
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
batch_normalize=1
|
||||||
|
filters=128
|
||||||
|
size=3
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
activation=leaky
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=-3
|
||||||
|
|
||||||
|
[shortcut]
|
||||||
|
activation=leaky
|
||||||
|
from=8
|
||||||
|
|
||||||
|
[convolutional]
|
||||||
|
size=1
|
||||||
|
stride=1
|
||||||
|
pad=1
|
||||||
|
filters=255
|
||||||
|
activation=linear
|
||||||
|
|
||||||
|
[yolo]
|
||||||
|
mask = 1,2,3
|
||||||
|
anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
|
||||||
|
classes=80
|
||||||
|
num=6
|
||||||
|
jitter=.3
|
||||||
|
ignore_thresh = .7
|
||||||
|
truth_thresh = 1
|
||||||
|
random=1
|
Reference in New Issue
Block a user