mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Detection good, split up col images
This commit is contained in:
@@ -65,7 +65,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->bias_updates = calloc(n, sizeof(float));
|
||||
layer->bias_momentum = calloc(n, sizeof(float));
|
||||
float scale = 1./(size*size*c);
|
||||
scale = .05;
|
||||
scale = .01;
|
||||
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
|
||||
for(i = 0; i < n; ++i){
|
||||
//layer->biases[i] = rand_normal()*scale + scale;
|
||||
@@ -74,7 +74,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
int out_h = convolutional_out_height(*layer);
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
|
||||
layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
||||
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
||||
#ifdef GPU
|
||||
@@ -86,7 +86,7 @@ convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, in
|
||||
layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
|
||||
layer->bias_momentum_cl = cl_make_array(layer->bias_momentum, n);
|
||||
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, layer->batch*out_h*out_w*size*size*c);
|
||||
layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
|
||||
layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
||||
layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
|
||||
#endif
|
||||
@@ -106,7 +106,7 @@ void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
|
||||
int out_w = convolutional_out_width(*layer);
|
||||
|
||||
layer->col_image = realloc(layer->col_image,
|
||||
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
||||
layer->output = realloc(layer->output,
|
||||
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
||||
layer->delta = realloc(layer->delta,
|
||||
@@ -143,13 +143,13 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.output;
|
||||
|
||||
im2col_cpu(in, layer.batch, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_cpu(in, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
b += k*n;
|
||||
c += n*m;
|
||||
in += layer.c*layer.h*layer.w;
|
||||
}
|
||||
activate_array(layer.output, m*n*layer.batch, layer.activation);
|
||||
}
|
||||
@@ -166,7 +166,7 @@ void learn_bias_convolutional_layer(convolutional_layer layer)
|
||||
}
|
||||
}
|
||||
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
void backward_convolutional_layer(convolutional_layer layer, float *in, float *delta)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
@@ -176,35 +176,28 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
||||
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
||||
learn_bias_convolutional_layer(layer);
|
||||
|
||||
float *a = layer.delta;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
if(delta) memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
float *a = layer.delta + i*m*k;
|
||||
float *b = layer.col_image;
|
||||
float *c = layer.filter_updates;
|
||||
|
||||
float *im = in+i*layer.c*layer.h*layer.w;
|
||||
|
||||
im2col_cpu(im, layer.c, layer.h, layer.w,
|
||||
layer.size, layer.stride, layer.pad, b);
|
||||
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
||||
a += m*k;
|
||||
b += k*n;
|
||||
}
|
||||
|
||||
if(delta){
|
||||
m = layer.size*layer.size*layer.c;
|
||||
k = layer.n;
|
||||
n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
if(delta){
|
||||
a = layer.filters;
|
||||
b = layer.delta + i*m*k;
|
||||
c = layer.col_image;
|
||||
|
||||
a = layer.filters;
|
||||
b = layer.delta;
|
||||
c = layer.col_image;
|
||||
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
||||
b += k*n;
|
||||
c += m*n;
|
||||
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta+i*layer.c*layer.h*layer.w);
|
||||
}
|
||||
|
||||
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
||||
|
||||
col2im_cpu(layer.col_image, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -354,36 +347,17 @@ void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
|
||||
|
||||
bias_output_gpu(layer);
|
||||
|
||||
#ifdef TIMEIT
|
||||
clock_t time = clock();
|
||||
printf("Forward\n");
|
||||
#endif
|
||||
|
||||
im2col_ongpu(in, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
|
||||
#ifdef TIMEIT
|
||||
clFinish(cl.queue);
|
||||
printf("Im2col %f\n", sec(clock()-time));
|
||||
time = clock();
|
||||
#endif
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.output_cl;
|
||||
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,i*k*n,n,1.,c,i*m*n,n);
|
||||
gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
|
||||
}
|
||||
#ifdef TIMEIT
|
||||
clFinish(cl.queue);
|
||||
printf("Gemm %f\n", sec(clock()-time));
|
||||
#endif
|
||||
activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
|
||||
#ifdef TIMEIT
|
||||
cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
|
||||
#endif
|
||||
}
|
||||
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
|
||||
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
|
||||
{
|
||||
int i;
|
||||
int m = layer.n;
|
||||
@@ -393,30 +367,26 @@ void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl
|
||||
gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
|
||||
learn_bias_convolutional_layer_ongpu(layer);
|
||||
|
||||
if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem a = layer.delta_cl;
|
||||
cl_mem b = layer.col_image_cl;
|
||||
cl_mem c = layer.filter_updates_cl;
|
||||
|
||||
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,i*k*n,k,1,c,0,n);
|
||||
}
|
||||
im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_cl);
|
||||
gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
|
||||
|
||||
if(delta_cl){
|
||||
m = layer.size*layer.size*layer.c;
|
||||
k = layer.n;
|
||||
n = convolutional_out_height(layer)*
|
||||
convolutional_out_width(layer);
|
||||
if(delta_cl){
|
||||
|
||||
for(i = 0; i < layer.batch; ++i){
|
||||
cl_mem a = layer.filters_cl;
|
||||
cl_mem b = layer.delta_cl;
|
||||
cl_mem c = layer.col_image_cl;
|
||||
|
||||
gemm_ongpu_offset(1,0,m,n,k,1,a,0,m,b,i*k*n,n,0,c,i*m*n,n);
|
||||
}
|
||||
gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
|
||||
|
||||
scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
|
||||
col2im_ongpu(layer.col_image_cl, layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_cl);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user