diff --git a/cfg/yolo-small.cfg b/cfg/yolo-small.cfg index a8f001af..c04dd15e 100644 --- a/cfg/yolo-small.cfg +++ b/cfg/yolo-small.cfg @@ -199,6 +199,6 @@ activation=logistic classes=20 coords=4 rescore=1 -joint=1 -objectness = 0 -background=0 +joint=0 +objectness=1 + diff --git a/scripts/label.sh b/scripts/imagenet_label.sh similarity index 100% rename from scripts/label.sh rename to scripts/imagenet_label.sh diff --git a/scripts/voc_label.py b/scripts/voc_label.py new file mode 100644 index 00000000..d1e88236 --- /dev/null +++ b/scripts/voc_label.py @@ -0,0 +1,56 @@ +import xml.etree.ElementTree as ET +import pickle +import os +from os import listdir, getcwd +from os.path import join + +sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')] + +classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] + + +def convert(size, box): + dw = 1./size[0] + dh = 1./size[1] + x = (box[0] + box[1])/2.0 + y = (box[2] + box[3])/2.0 + w = box[1] - box[0] + h = box[3] - box[2] + x = x*dw + w = w*dw + y = y*dh + h = h*dh + return (x,y,w,h) + +def convert_annotation(year, image_id): + in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)) + out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w') + tree=ET.parse(in_file) + root = tree.getroot() + size = root.find('size') + w = int(size.find('width').text) + h = int(size.find('height').text) + + for obj in root.iter('object'): + difficult = obj.find('difficult').text + cls = obj.find('name').text + if cls not in classes or int(difficult) == 1: + continue + cls_id = classes.index(cls) + xmlbox = obj.find('bndbox') + b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) + bb = convert((w,h), b) + out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') + +wd = getcwd() + +for year, image_set in sets: + if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)): + os.makedirs('VOCdevkit/VOC%s/labels/'%(year)) + image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split() + list_file = open('%s_%s.txt'%(year, image_set), 'w') + for image_id in image_ids: + list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id)) + convert_annotation(year, image_id) + list_file.close() + diff --git a/src/detection.c b/src/detection.c index b57f597e..615ad6d2 100644 --- a/src/detection.c +++ b/src/detection.c @@ -51,6 +51,8 @@ void draw_detection(image im, float *box, int side, int objectness, char *label) void train_detection(char *cfgfile, char *weightfile) { + char *train_images = "/home/pjreddie/data/voc/test/train.txt"; + char *backup_directory = "/home/pjreddie/backup/"; srand(time(0)); data_seed = time(0); char *base = basecfg(cfgfile); @@ -71,7 +73,7 @@ void train_detection(char *cfgfile, char *weightfile) int side = sqrt(get_detection_layer_locations(layer)); char **paths; - list *plist = get_paths("/home/pjreddie/data/voc/test/train.txt"); + list *plist = get_paths(train_images); int N = plist->size; paths = (char **)list_to_array(plist); @@ -96,26 +98,26 @@ void train_detection(char *cfgfile, char *weightfile) fprintf(stderr, "Starting second stage...\n"); net.learning_rate *= 10; char buff[256]; - sprintf(buff, "/home/pjreddie/imagenet_backup/%s_first_stage.weights", base); + sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base); save_weights(net, buff); } if((i-1)*imgs <= 80*N && i*imgs > N*80){ fprintf(stderr, "Second stage done.\n"); net.learning_rate *= .1; char buff[256]; - sprintf(buff, "/home/pjreddie/imagenet_backup/%s_second_stage.weights", base); + sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base); save_weights(net, buff); return; } if(i%1000==0){ char buff[256]; - sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); + sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } char buff[256]; - sprintf(buff, "/home/pjreddie/imagenet_backup/%s_final.weights",base); + sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); }