diff --git a/src/parser.c b/src/parser.c index 3646cf2b..6d9116fa 100644 --- a/src/parser.c +++ b/src/parser.c @@ -102,7 +102,6 @@ deconvolutional_layer parse_deconvolutional(list *options, size_params params) #ifdef GPU if(weights || biases) push_deconvolutional_layer(layer); #endif - option_unused(options); return layer; } @@ -131,7 +130,6 @@ convolutional_layer parse_convolutional(list *options, size_params params) #ifdef GPU if(weights || biases) push_convolutional_layer(layer); #endif - option_unused(options); return layer; } @@ -150,7 +148,6 @@ connected_layer parse_connected(list *options, size_params params) #ifdef GPU if(weights || biases) push_connected_layer(layer); #endif - option_unused(options); return layer; } @@ -158,7 +155,6 @@ softmax_layer parse_softmax(list *options, size_params params) { int groups = option_find_int(options, "groups",1); softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); - option_unused(options); return layer; } @@ -171,7 +167,6 @@ detection_layer parse_detection(list *options, size_params params) int objectness = option_find_int(options, "objectness", 0); int background = option_find_int(options, "background", 0); detection_layer layer = make_detection_layer(params.batch, params.inputs, classes, coords, joint, rescore, background, objectness); - option_unused(options); return layer; } @@ -180,7 +175,6 @@ cost_layer parse_cost(list *options, size_params params) char *type_s = option_find_str(options, "type", "sse"); COST_TYPE type = get_cost_type(type_s); cost_layer layer = make_cost_layer(params.batch, params.inputs, type); - option_unused(options); return layer; } @@ -201,7 +195,6 @@ crop_layer parse_crop(list *options, size_params params) if(!(h && w && c)) error("Layer before crop layer must output image."); crop_layer l = make_crop_layer(batch,h,w,c,crop_height,crop_width,flip, angle, saturation, exposure); - option_unused(options); return l; } @@ -218,7 +211,6 @@ maxpool_layer parse_maxpool(list *options, size_params params) if(!(h && w && c)) error("Layer before maxpool layer must output image."); maxpool_layer layer = make_maxpool_layer(batch,h,w,c,size,stride); - option_unused(options); return layer; } @@ -226,7 +218,6 @@ dropout_layer parse_dropout(list *options, size_params params) { float probability = option_find_float(options, "probability", .5); dropout_layer layer = make_dropout_layer(params.batch, params.inputs, probability); - option_unused(options); return layer; } @@ -237,7 +228,6 @@ layer parse_normalization(list *options, size_params params) float kappa = option_find_float(options, "kappa", 1); int size = option_find_int(options, "size", 5); layer l = make_normalization_layer(params.batch, params.w, params.h, params.c, size, alpha, beta, kappa); - option_unused(options); return l; } @@ -278,7 +268,6 @@ route_layer parse_route(list *options, size_params params, network net) } } - option_unused(options); return layer; } @@ -298,7 +287,6 @@ void parse_net_options(list *options, network *net) net->c = option_find_int_quiet(options, "channels",0); net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); - option_unused(options); } network parse_network_cfg(char *filename) @@ -359,6 +347,7 @@ network parse_network_cfg(char *filename) fprintf(stderr, "Type not recognized: %s\n", s->type); } l.dontload = option_find_int_quiet(options, "dontload", 0); + option_unused(options); net.layers[count] = l; free_section(s); n = n->next;