mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Better VOC handling and resizing
This commit is contained in:
@ -7,16 +7,17 @@
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
|
||||
connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
|
||||
{
|
||||
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
|
||||
int i;
|
||||
connected_layer *layer = calloc(1, sizeof(connected_layer));
|
||||
layer->inputs = inputs;
|
||||
layer->outputs = outputs;
|
||||
layer->batch=batch;
|
||||
|
||||
layer->output = calloc(outputs, sizeof(float*));
|
||||
layer->delta = calloc(outputs, sizeof(float*));
|
||||
layer->output = calloc(batch*outputs, sizeof(float*));
|
||||
layer->delta = calloc(batch*outputs, sizeof(float*));
|
||||
|
||||
layer->weight_updates = calloc(inputs*outputs, sizeof(float));
|
||||
layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
|
||||
@ -78,14 +79,14 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
|
||||
int m = 1;
|
||||
int m = layer.batch;
|
||||
int k = layer.inputs;
|
||||
int n = layer.outputs;
|
||||
float *a = input;
|
||||
float *b = layer.weights;
|
||||
float *c = layer.output;
|
||||
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.output[i] = activate(layer.output[i], layer.activation);
|
||||
}
|
||||
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
|
||||
@ -94,12 +95,12 @@ void forward_connected_layer(connected_layer layer, float *input)
|
||||
void learn_connected_layer(connected_layer layer, float *input)
|
||||
{
|
||||
int i;
|
||||
for(i = 0; i < layer.outputs; ++i){
|
||||
for(i = 0; i < layer.outputs*layer.batch; ++i){
|
||||
layer.delta[i] *= gradient(layer.output[i], layer.activation);
|
||||
layer.bias_updates[i] += layer.delta[i];
|
||||
layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
|
||||
}
|
||||
int m = layer.inputs;
|
||||
int k = 1;
|
||||
int k = layer.batch;
|
||||
int n = layer.outputs;
|
||||
float *a = input;
|
||||
float *b = layer.delta;
|
||||
@ -113,7 +114,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
|
||||
|
||||
int m = layer.inputs;
|
||||
int k = layer.outputs;
|
||||
int n = 1;
|
||||
int n = layer.batch;
|
||||
|
||||
float *a = layer.weights;
|
||||
float *b = layer.delta;
|
||||
|
Reference in New Issue
Block a user