mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Better VOC handling and resizing
This commit is contained in:
18
src/parser.c
18
src/parser.c
@ -52,6 +52,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
@ -59,7 +60,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation);
|
||||
convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
@ -90,10 +91,11 @@ connected_layer *parse_connected(list *options, network net, int count)
|
||||
ACTIVATION activation = get_activation(activation_s);
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
connected_layer *layer = make_connected_layer(input, output, activation);
|
||||
connected_layer *layer = make_connected_layer(net.batch, input, output, activation);
|
||||
char *data = option_find_str(options, "data", 0);
|
||||
if(data){
|
||||
char *curr = data;
|
||||
@ -120,10 +122,11 @@ softmax_layer *parse_softmax(list *options, network net, int count)
|
||||
int input;
|
||||
if(count == 0){
|
||||
input = option_find_int(options, "input",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
input = get_network_output_size_layer(net, count-1);
|
||||
}
|
||||
softmax_layer *layer = make_softmax_layer(input);
|
||||
softmax_layer *layer = make_softmax_layer(net.batch, input);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
@ -136,6 +139,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
h = option_find_int(options, "height",1);
|
||||
w = option_find_int(options, "width",1);
|
||||
c = option_find_int(options, "channels",1);
|
||||
net.batch = option_find_int(options, "batch",1);
|
||||
}else{
|
||||
image m = get_network_image_layer(net, count-1);
|
||||
h = m.h;
|
||||
@ -143,7 +147,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
c = m.c;
|
||||
if(h == 0) error("Layer before convolutional layer must output image.");
|
||||
}
|
||||
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride);
|
||||
maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
|
||||
option_unused(options);
|
||||
return layer;
|
||||
}
|
||||
@ -151,7 +155,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
|
||||
network parse_network_cfg(char *filename)
|
||||
{
|
||||
list *sections = read_cfg(filename);
|
||||
network net = make_network(sections->size);
|
||||
network net = make_network(sections->size, 0);
|
||||
|
||||
node *n = sections->front;
|
||||
int count = 0;
|
||||
@ -162,18 +166,22 @@ network parse_network_cfg(char *filename)
|
||||
convolutional_layer *layer = parse_convolutional(options, net, count);
|
||||
net.types[count] = CONVOLUTIONAL;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_connected(s)){
|
||||
connected_layer *layer = parse_connected(options, net, count);
|
||||
net.types[count] = CONNECTED;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_softmax(s)){
|
||||
softmax_layer *layer = parse_softmax(options, net, count);
|
||||
net.types[count] = SOFTMAX;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else if(is_maxpool(s)){
|
||||
maxpool_layer *layer = parse_maxpool(options, net, count);
|
||||
net.types[count] = MAXPOOL;
|
||||
net.layers[count] = layer;
|
||||
net.batch = layer->batch;
|
||||
}else{
|
||||
fprintf(stderr, "Type not recognized: %s\n", s->type);
|
||||
}
|
||||
|
Reference in New Issue
Block a user