Better VOC handling and resizing

This commit is contained in:
Joseph Redmon 2014-03-12 21:57:34 -07:00
parent 15e86996d6
commit 2ea63c0e99
21 changed files with 288 additions and 173 deletions

View File

@ -4,9 +4,9 @@ UNAME = $(shell uname)
ifeq ($(UNAME), Darwin) ifeq ($(UNAME), Darwin)
COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include COMMON += -isystem /usr/local/Cellar/opencv/2.4.6.1/include/opencv -isystem /usr/local/Cellar/opencv/2.4.6.1/include
else else
COMMON += -march=native COMMON += -march=native -flto
endif endif
CFLAGS= $(COMMON) -Ofast -flto CFLAGS= $(COMMON) -Ofast
#CFLAGS= $(COMMON) -O0 -g #CFLAGS= $(COMMON) -O0 -g
LDFLAGS=`pkg-config --libs opencv` -lm LDFLAGS=`pkg-config --libs opencv` -lm
VPATH=./src/ VPATH=./src/

BIN
dog.jpg

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

View File

@ -7,16 +7,17 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation) connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation)
{ {
fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
int i; int i;
connected_layer *layer = calloc(1, sizeof(connected_layer)); connected_layer *layer = calloc(1, sizeof(connected_layer));
layer->inputs = inputs; layer->inputs = inputs;
layer->outputs = outputs; layer->outputs = outputs;
layer->batch=batch;
layer->output = calloc(outputs, sizeof(float*)); layer->output = calloc(batch*outputs, sizeof(float*));
layer->delta = calloc(outputs, sizeof(float*)); layer->delta = calloc(batch*outputs, sizeof(float*));
layer->weight_updates = calloc(inputs*outputs, sizeof(float)); layer->weight_updates = calloc(inputs*outputs, sizeof(float));
layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); layer->weight_adapt = calloc(inputs*outputs, sizeof(float));
@ -78,14 +79,14 @@ void forward_connected_layer(connected_layer layer, float *input)
{ {
int i; int i;
memcpy(layer.output, layer.biases, layer.outputs*sizeof(float)); memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
int m = 1; int m = layer.batch;
int k = layer.inputs; int k = layer.inputs;
int n = layer.outputs; int n = layer.outputs;
float *a = input; float *a = input;
float *b = layer.weights; float *b = layer.weights;
float *c = layer.output; float *c = layer.output;
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
for(i = 0; i < layer.outputs; ++i){ for(i = 0; i < layer.outputs*layer.batch; ++i){
layer.output[i] = activate(layer.output[i], layer.activation); layer.output[i] = activate(layer.output[i], layer.activation);
} }
//for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
@ -94,12 +95,12 @@ void forward_connected_layer(connected_layer layer, float *input)
void learn_connected_layer(connected_layer layer, float *input) void learn_connected_layer(connected_layer layer, float *input)
{ {
int i; int i;
for(i = 0; i < layer.outputs; ++i){ for(i = 0; i < layer.outputs*layer.batch; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation); layer.delta[i] *= gradient(layer.output[i], layer.activation);
layer.bias_updates[i] += layer.delta[i]; layer.bias_updates[i%layer.batch] += layer.delta[i]/layer.batch;
} }
int m = layer.inputs; int m = layer.inputs;
int k = 1; int k = layer.batch;
int n = layer.outputs; int n = layer.outputs;
float *a = input; float *a = input;
float *b = layer.delta; float *b = layer.delta;
@ -113,7 +114,7 @@ void backward_connected_layer(connected_layer layer, float *input, float *delta)
int m = layer.inputs; int m = layer.inputs;
int k = layer.outputs; int k = layer.outputs;
int n = 1; int n = layer.batch;
float *a = layer.weights; float *a = layer.weights;
float *b = layer.delta; float *b = layer.delta;

View File

@ -4,6 +4,7 @@
#include "activations.h" #include "activations.h"
typedef struct{ typedef struct{
int batch;
int inputs; int inputs;
int outputs; int outputs;
float *weights; float *weights;
@ -25,7 +26,7 @@ typedef struct{
} connected_layer; } connected_layer;
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation); connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation);
void forward_connected_layer(connected_layer layer, float *input); void forward_connected_layer(connected_layer layer, float *input);
void backward_connected_layer(connected_layer layer, float *input, float *delta); void backward_connected_layer(connected_layer layer, float *input, float *delta);

View File

@ -31,7 +31,7 @@ image get_convolutional_delta(convolutional_layer layer)
return float_to_image(h,w,c,layer.delta); return float_to_image(h,w,c,layer.delta);
} }
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{ {
int i; int i;
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
@ -40,6 +40,7 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
layer->w = w; layer->w = w;
layer->c = c; layer->c = c;
layer->n = n; layer->n = n;
layer->batch = batch;
layer->stride = stride; layer->stride = stride;
layer->size = size; layer->size = size;
@ -56,12 +57,12 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
//layer->biases[i] = rand_normal()*scale + scale; //layer->biases[i] = rand_normal()*scale + scale;
layer->biases[i] = 0; layer->biases[i] = 0;
} }
int out_h = (h-size)/stride + 1; int out_h = convolutional_out_height(*layer);
int out_w = (w-size)/stride + 1; int out_w = convolutional_out_width(*layer);
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
layer->output = calloc(out_h * out_w * n, sizeof(float)); layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
layer->delta = calloc(out_h * out_w * n, sizeof(float)); layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
layer->activation = activation; layer->activation = activation;
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
@ -70,21 +71,39 @@ convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int si
return layer; return layer;
} }
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
{
layer->h = h;
layer->w = w;
layer->c = c;
int out_h = convolutional_out_height(*layer);
int out_w = convolutional_out_width(*layer);
layer->col_image = realloc(layer->col_image,
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
layer->output = realloc(layer->output,
layer->batch*out_h * out_w * layer->n*sizeof(float));
layer->delta = realloc(layer->delta,
layer->batch*out_h * out_w * layer->n*sizeof(float));
}
void forward_convolutional_layer(const convolutional_layer layer, float *in) void forward_convolutional_layer(const convolutional_layer layer, float *in)
{ {
int i; int i;
int m = layer.n; int m = layer.n;
int k = layer.size*layer.size*layer.c; int k = layer.size*layer.size*layer.c;
int n = ((layer.h-layer.size)/layer.stride + 1)* int n = convolutional_out_height(layer)*
((layer.w-layer.size)/layer.stride + 1); convolutional_out_width(layer)*
layer.batch;
memset(layer.output, 0, m*n*sizeof(float)); memset(layer.output, 0, m*n*sizeof(float));
float *a = layer.filters; float *a = layer.filters;
float *b = layer.col_image; float *b = layer.col_image;
float *c = layer.output; float *c = layer.output;
for(i = 0; i < layer.batch; ++i){
im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch));
}
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
for(i = 0; i < m*n; ++i){ for(i = 0; i < m*n; ++i){
@ -97,9 +116,10 @@ void forward_convolutional_layer(const convolutional_layer layer, float *in)
void gradient_delta_convolutional_layer(convolutional_layer layer) void gradient_delta_convolutional_layer(convolutional_layer layer)
{ {
int i; int i;
int size = convolutional_out_height(layer) int size = convolutional_out_height(layer)*
*convolutional_out_width(layer) convolutional_out_width(layer)*
*layer.n; layer.n*
layer.batch;
for(i = 0; i < size; ++i){ for(i = 0; i < size; ++i){
layer.delta[i] *= gradient(layer.output[i], layer.activation); layer.delta[i] *= gradient(layer.output[i], layer.activation);
} }
@ -107,17 +127,19 @@ void gradient_delta_convolutional_layer(convolutional_layer layer)
void learn_bias_convolutional_layer(convolutional_layer layer) void learn_bias_convolutional_layer(convolutional_layer layer)
{ {
int i,j; int i,j,b;
int size = convolutional_out_height(layer) int size = convolutional_out_height(layer)
*convolutional_out_width(layer); *convolutional_out_width(layer);
for(b = 0; b < layer.batch; ++b){
for(i = 0; i < layer.n; ++i){ for(i = 0; i < layer.n; ++i){
float sum = 0; float sum = 0;
for(j = 0; j < size; ++j){ for(j = 0; j < size; ++j){
sum += layer.delta[j+i*size]; sum += layer.delta[j+size*(i+b*layer.n)];
} }
layer.bias_updates[i] += sum/size; layer.bias_updates[i] += sum/size;
} }
} }
}
void learn_convolutional_layer(convolutional_layer layer) void learn_convolutional_layer(convolutional_layer layer)
{ {
@ -125,8 +147,9 @@ void learn_convolutional_layer(convolutional_layer layer)
learn_bias_convolutional_layer(layer); learn_bias_convolutional_layer(layer);
int m = layer.n; int m = layer.n;
int n = layer.size*layer.size*layer.c; int n = layer.size*layer.size*layer.c;
int k = ((layer.h-layer.size)/layer.stride + 1)* int k = convolutional_out_height(layer)*
((layer.w-layer.size)/layer.stride + 1); convolutional_out_width(layer)*
layer.batch;
float *a = layer.delta; float *a = layer.delta;
float *b = layer.col_image; float *b = layer.col_image;
@ -137,10 +160,12 @@ void learn_convolutional_layer(convolutional_layer layer)
void backward_convolutional_layer(convolutional_layer layer, float *delta) void backward_convolutional_layer(convolutional_layer layer, float *delta)
{ {
int i;
int m = layer.size*layer.size*layer.c; int m = layer.size*layer.size*layer.c;
int k = layer.n; int k = layer.n;
int n = ((layer.h-layer.size)/layer.stride + 1)* int n = convolutional_out_height(layer)*
((layer.w-layer.size)/layer.stride + 1); convolutional_out_width(layer)*
layer.batch;
float *a = layer.filters; float *a = layer.filters;
float *b = layer.delta; float *b = layer.delta;
@ -150,8 +175,10 @@ void backward_convolutional_layer(convolutional_layer layer, float *delta)
memset(c, 0, m*n*sizeof(float)); memset(c, 0, m*n*sizeof(float));
gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float)); memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
col2im_cpu(c, layer.c, layer.h, layer.w, layer.size, layer.stride, delta); for(i = 0; i < layer.batch; ++i){
col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch);
}
} }
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
@ -225,7 +252,7 @@ void update_convolutional_layer(convolutional_layer layer, float step, float mom
void test_convolutional_layer() void test_convolutional_layer()
{ {
convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR); convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
float input[] = {1,2,3,4, float input[] = {1,2,3,4,
5,6,7,8, 5,6,7,8,
9,10,11,12, 9,10,11,12,

View File

@ -5,6 +5,7 @@
#include "activations.h" #include "activations.h"
typedef struct { typedef struct {
int batch;
int h,w,c; int h,w,c;
int n; int n;
int size; int size;
@ -24,7 +25,8 @@ typedef struct {
ACTIVATION activation; ACTIVATION activation;
} convolutional_layer; } convolutional_layer;
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation); convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation);
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c);
void forward_convolutional_layer(const convolutional_layer layer, float *in); void forward_convolutional_layer(const convolutional_layer layer, float *in);
void learn_convolutional_layer(convolutional_layer layer); void learn_convolutional_layer(convolutional_layer layer);
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay); void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay);

View File

@ -119,6 +119,30 @@ data load_categorical_data_csv(char *filename, int target, int k)
return d; return d;
} }
data load_cifar10_data(char *filename)
{
data d;
d.shallow = 0;
unsigned long i,j;
matrix X = make_matrix(10000, 3072);
matrix y = make_matrix(10000, 10);
d.X = X;
d.y = y;
FILE *fp = fopen(filename, "rb");
for(i = 0; i < 10000; ++i){
unsigned char bytes[3073];
fread(bytes, 1, 3073, fp);
int class = bytes[0];
y.vals[i][class] = 1;
for(j = 0; j < X.cols; ++j){
X.vals[i][j] = (double)bytes[j+1];
}
}
fclose(fp);
return d;
}
void randomize_data(data d) void randomize_data(data d)
{ {
int i; int i;

View File

@ -17,6 +17,7 @@ data load_data_image_pathfile_part(char *filename, int part, int total,
char **labels, int k, int h, int w); char **labels, int k, int h, int w);
data load_data_image_pathfile_random(char *filename, int n, char **labels, data load_data_image_pathfile_random(char *filename, int n, char **labels,
int k, int h, int w); int k, int h, int w);
data load_cifar10_data(char *filename);
list *get_paths(char *filename); list *get_paths(char *filename);
data load_categorical_data_csv(char *filename, int target, int k); data load_categorical_data_csv(char *filename, int target, int k);
void normalize_data_rows(data d); void normalize_data_rows(data d);

View File

@ -136,7 +136,7 @@ void show_image(image p, char *name)
} }
} }
free_image(copy); free_image(copy);
if(disp->height < 500 || disp->width < 500){ if(disp->height < 500 || disp->width < 500 || disp->height > 1000){
int w = 1500; int w = 1500;
int h = w*p.h/p.w; int h = w*p.h/p.w;
if(h > 1000){ if(h > 1000){

View File

@ -17,10 +17,12 @@ image get_maxpool_delta(maxpool_layer layer)
return float_to_image(h,w,c,layer.delta); return float_to_image(h,w,c,layer.delta);
} }
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride) maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride)
{ {
c = c*batch;
fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride); fprintf(stderr, "Maxpool Layer: %d x %d x %d image, %d stride\n", h,w,c,stride);
maxpool_layer *layer = calloc(1, sizeof(maxpool_layer)); maxpool_layer *layer = calloc(1, sizeof(maxpool_layer));
layer->batch = batch;
layer->h = h; layer->h = h;
layer->w = w; layer->w = w;
layer->c = c; layer->c = c;
@ -30,6 +32,15 @@ maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride)
return layer; return layer;
} }
void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c)
{
layer->h = h;
layer->w = w;
layer->c = c;
layer->output = realloc(layer->output, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
layer->delta = realloc(layer->delta, ((h-1)/layer->stride+1) * ((w-1)/layer->stride+1) * c * sizeof(float));
}
void forward_maxpool_layer(const maxpool_layer layer, float *in) void forward_maxpool_layer(const maxpool_layer layer, float *in)
{ {
image input = float_to_image(layer.h, layer.w, layer.c, in); image input = float_to_image(layer.h, layer.w, layer.c, in);

View File

@ -4,6 +4,7 @@
#include "image.h" #include "image.h"
typedef struct { typedef struct {
int batch;
int h,w,c; int h,w,c;
int stride; int stride;
float *delta; float *delta;
@ -11,7 +12,8 @@ typedef struct {
} maxpool_layer; } maxpool_layer;
image get_maxpool_image(maxpool_layer layer); image get_maxpool_image(maxpool_layer layer);
maxpool_layer *make_maxpool_layer(int h, int w, int c, int stride); maxpool_layer *make_maxpool_layer(int batch, int h, int w, int c, int stride);
void resize_maxpool_layer(maxpool_layer *layer, int h, int w, int c);
void forward_maxpool_layer(const maxpool_layer layer, float *in); void forward_maxpool_layer(const maxpool_layer layer, float *in);
void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta); void backward_maxpool_layer(const maxpool_layer layer, float *in, float *delta);

View File

@ -10,10 +10,11 @@
#include "maxpool_layer.h" #include "maxpool_layer.h"
#include "softmax_layer.h" #include "softmax_layer.h"
network make_network(int n) network make_network(int n, int batch)
{ {
network net; network net;
net.n = n; net.n = n;
net.batch = batch;
net.layers = calloc(net.n, sizeof(void *)); net.layers = calloc(net.n, sizeof(void *));
net.types = calloc(net.n, sizeof(LAYER_TYPE)); net.types = calloc(net.n, sizeof(LAYER_TYPE));
net.outputs = 0; net.outputs = 0;
@ -25,10 +26,11 @@ void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first)
{ {
int i; int i;
fprintf(fp, "[convolutional]\n"); fprintf(fp, "[convolutional]\n");
if(first) fprintf(fp, "height=%d\n" if(first) fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n" "width=%d\n"
"channels=%d\n", "channels=%d\n",
l->h, l->w, l->c); l->batch,l->h, l->w, l->c);
fprintf(fp, "filters=%d\n" fprintf(fp, "filters=%d\n"
"size=%d\n" "size=%d\n"
"stride=%d\n" "stride=%d\n"
@ -44,7 +46,7 @@ void print_connected_cfg(FILE *fp, connected_layer *l, int first)
{ {
int i; int i;
fprintf(fp, "[connected]\n"); fprintf(fp, "[connected]\n");
if(first) fprintf(fp, "input=%d\n", l->inputs); if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
fprintf(fp, "output=%d\n" fprintf(fp, "output=%d\n"
"activation=%s\n", "activation=%s\n",
l->outputs, l->outputs,
@ -58,17 +60,18 @@ void print_connected_cfg(FILE *fp, connected_layer *l, int first)
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first) void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first)
{ {
fprintf(fp, "[maxpool]\n"); fprintf(fp, "[maxpool]\n");
if(first) fprintf(fp, "height=%d\n" if(first) fprintf(fp, "batch=%d\n"
"height=%d\n"
"width=%d\n" "width=%d\n"
"channels=%d\n", "channels=%d\n",
l->h, l->w, l->c); l->batch,l->h, l->w, l->c);
fprintf(fp, "stride=%d\n\n", l->stride); fprintf(fp, "stride=%d\n\n", l->stride);
} }
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first) void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
{ {
fprintf(fp, "[softmax]\n"); fprintf(fp, "[softmax]\n");
if(first) fprintf(fp, "input=%d\n", l->inputs); if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
fprintf(fp, "\n"); fprintf(fp, "\n");
} }
@ -191,11 +194,11 @@ float calculate_error_network(network net, float *truth)
float *out = get_network_output(net); float *out = get_network_output(net);
int i, k = get_network_output_size(net); int i, k = get_network_output_size(net);
for(i = 0; i < k; ++i){ for(i = 0; i < k; ++i){
printf("%f, ", out[i]); //printf("%f, ", out[i]);
delta[i] = truth[i] - out[i]; delta[i] = truth[i] - out[i];
sum += delta[i]*delta[i]; sum += delta[i]*delta[i];
} }
printf("\n"); //printf("\n");
return sum; return sum;
} }
@ -258,19 +261,26 @@ float train_network_sgd(network net, data d, int n, float step, float momentum,f
int i; int i;
float error = 0; float error = 0;
int correct = 0; int correct = 0;
int pos = 0;
for(i = 0; i < n; ++i){ for(i = 0; i < n; ++i){
int index = rand()%d.X.rows; int index = rand()%d.X.rows;
error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); float err = train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay);
float *y = d.y.vals[index]; float *y = d.y.vals[index];
int class = get_predicted_class_network(net); int class = get_predicted_class_network(net);
correct += (y[class]?1:0); correct += (y[class]?1:0);
if(y[1]){
error += err;
++pos;
}
//printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
//if((i+1)%10 == 0){ //if((i+1)%10 == 0){
// printf("%d: %f\n", (i+1), (float)correct/(i+1)); // printf("%d: %f\n", (i+1), (float)correct/(i+1));
//} //}
} }
printf("Accuracy: %f\n",(float) correct/n); //printf("Accuracy: %f\n",(float) correct/n);
return error/n; return error/pos;
} }
float train_network_batch(network net, data d, int n, float step, float momentum,float decay) float train_network_batch(network net, data d, int n, float step, float momentum,float decay)
{ {
@ -304,7 +314,7 @@ void train_network(network net, data d, float step, float momentum, float decay)
} }
visualize_network(net); visualize_network(net);
cvWaitKey(100); cvWaitKey(100);
printf("Accuracy: %f\n", (float)correct/d.X.rows); fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows);
} }
int get_network_output_size_layer(network net, int i) int get_network_output_size_layer(network net, int i)
@ -330,7 +340,8 @@ int get_network_output_size_layer(network net, int i)
return 0; return 0;
} }
int reset_network_size(network net, int h, int w, int c) /*
int resize_network(network net, int h, int w, int c)
{ {
int i; int i;
for (i = 0; i < net.n; ++i){ for (i = 0; i < net.n; ++i){
@ -357,6 +368,34 @@ int reset_network_size(network net, int h, int w, int c)
} }
return 0; return 0;
} }
*/
int resize_network(network net, int h, int w, int c)
{
int i;
for (i = 0; i < net.n; ++i){
if(net.types[i] == CONVOLUTIONAL){
convolutional_layer *layer = (convolutional_layer *)net.layers[i];
resize_convolutional_layer(layer, h, w, c);
image output = get_convolutional_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}
else if(net.types[i] == MAXPOOL){
maxpool_layer *layer = (maxpool_layer *)net.layers[i];
resize_maxpool_layer(layer, h, w, c);
image output = get_maxpool_image(*layer);
h = output.h;
w = output.w;
c = output.c;
}
else{
error("Cannot resize this type of layer");
}
}
return 0;
}
int get_network_output_size(network net) int get_network_output_size(network net)
{ {

View File

@ -14,13 +14,14 @@ typedef enum {
typedef struct { typedef struct {
int n; int n;
int batch;
void **layers; void **layers;
LAYER_TYPE *types; LAYER_TYPE *types;
int outputs; int outputs;
float *output; float *output;
} network; } network;
network make_network(int n); network make_network(int n, int batch);
void forward_network(network net, float *input); void forward_network(network net, float *input);
float backward_network(network net, float *input, float *truth); float backward_network(network net, float *input, float *truth);
void update_network(network net, float step, float momentum, float decay); void update_network(network net, float step, float momentum, float decay);
@ -41,7 +42,7 @@ int get_predicted_class_network(network net);
void print_network(network net); void print_network(network net);
void visualize_network(network net); void visualize_network(network net);
void save_network(network net, char *filename); void save_network(network net, char *filename);
int reset_network_size(network net, int h, int w, int c); int resize_network(network net, int h, int w, int c);
#endif #endif

View File

@ -52,6 +52,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
h = option_find_int(options, "height",1); h = option_find_int(options, "height",1);
w = option_find_int(options, "width",1); w = option_find_int(options, "width",1);
c = option_find_int(options, "channels",1); c = option_find_int(options, "channels",1);
net.batch = option_find_int(options, "batch",1);
}else{ }else{
image m = get_network_image_layer(net, count-1); image m = get_network_image_layer(net, count-1);
h = m.h; h = m.h;
@ -59,7 +60,7 @@ convolutional_layer *parse_convolutional(list *options, network net, int count)
c = m.c; c = m.c;
if(h == 0) error("Layer before convolutional layer must output image."); if(h == 0) error("Layer before convolutional layer must output image.");
} }
convolutional_layer *layer = make_convolutional_layer(h,w,c,n,size,stride, activation); convolutional_layer *layer = make_convolutional_layer(net.batch,h,w,c,n,size,stride, activation);
char *data = option_find_str(options, "data", 0); char *data = option_find_str(options, "data", 0);
if(data){ if(data){
char *curr = data; char *curr = data;
@ -90,10 +91,11 @@ connected_layer *parse_connected(list *options, network net, int count)
ACTIVATION activation = get_activation(activation_s); ACTIVATION activation = get_activation(activation_s);
if(count == 0){ if(count == 0){
input = option_find_int(options, "input",1); input = option_find_int(options, "input",1);
net.batch = option_find_int(options, "batch",1);
}else{ }else{
input = get_network_output_size_layer(net, count-1); input = get_network_output_size_layer(net, count-1);
} }
connected_layer *layer = make_connected_layer(input, output, activation); connected_layer *layer = make_connected_layer(net.batch, input, output, activation);
char *data = option_find_str(options, "data", 0); char *data = option_find_str(options, "data", 0);
if(data){ if(data){
char *curr = data; char *curr = data;
@ -120,10 +122,11 @@ softmax_layer *parse_softmax(list *options, network net, int count)
int input; int input;
if(count == 0){ if(count == 0){
input = option_find_int(options, "input",1); input = option_find_int(options, "input",1);
net.batch = option_find_int(options, "batch",1);
}else{ }else{
input = get_network_output_size_layer(net, count-1); input = get_network_output_size_layer(net, count-1);
} }
softmax_layer *layer = make_softmax_layer(input); softmax_layer *layer = make_softmax_layer(net.batch, input);
option_unused(options); option_unused(options);
return layer; return layer;
} }
@ -136,6 +139,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
h = option_find_int(options, "height",1); h = option_find_int(options, "height",1);
w = option_find_int(options, "width",1); w = option_find_int(options, "width",1);
c = option_find_int(options, "channels",1); c = option_find_int(options, "channels",1);
net.batch = option_find_int(options, "batch",1);
}else{ }else{
image m = get_network_image_layer(net, count-1); image m = get_network_image_layer(net, count-1);
h = m.h; h = m.h;
@ -143,7 +147,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
c = m.c; c = m.c;
if(h == 0) error("Layer before convolutional layer must output image."); if(h == 0) error("Layer before convolutional layer must output image.");
} }
maxpool_layer *layer = make_maxpool_layer(h,w,c,stride); maxpool_layer *layer = make_maxpool_layer(net.batch,h,w,c,stride);
option_unused(options); option_unused(options);
return layer; return layer;
} }
@ -151,7 +155,7 @@ maxpool_layer *parse_maxpool(list *options, network net, int count)
network parse_network_cfg(char *filename) network parse_network_cfg(char *filename)
{ {
list *sections = read_cfg(filename); list *sections = read_cfg(filename);
network net = make_network(sections->size); network net = make_network(sections->size, 0);
node *n = sections->front; node *n = sections->front;
int count = 0; int count = 0;
@ -162,18 +166,22 @@ network parse_network_cfg(char *filename)
convolutional_layer *layer = parse_convolutional(options, net, count); convolutional_layer *layer = parse_convolutional(options, net, count);
net.types[count] = CONVOLUTIONAL; net.types[count] = CONVOLUTIONAL;
net.layers[count] = layer; net.layers[count] = layer;
net.batch = layer->batch;
}else if(is_connected(s)){ }else if(is_connected(s)){
connected_layer *layer = parse_connected(options, net, count); connected_layer *layer = parse_connected(options, net, count);
net.types[count] = CONNECTED; net.types[count] = CONNECTED;
net.layers[count] = layer; net.layers[count] = layer;
net.batch = layer->batch;
}else if(is_softmax(s)){ }else if(is_softmax(s)){
softmax_layer *layer = parse_softmax(options, net, count); softmax_layer *layer = parse_softmax(options, net, count);
net.types[count] = SOFTMAX; net.types[count] = SOFTMAX;
net.layers[count] = layer; net.layers[count] = layer;
net.batch = layer->batch;
}else if(is_maxpool(s)){ }else if(is_maxpool(s)){
maxpool_layer *layer = parse_maxpool(options, net, count); maxpool_layer *layer = parse_maxpool(options, net, count);
net.types[count] = MAXPOOL; net.types[count] = MAXPOOL;
net.layers[count] = layer; net.layers[count] = layer;
net.batch = layer->batch;
}else{ }else{
fprintf(stderr, "Type not recognized: %s\n", s->type); fprintf(stderr, "Type not recognized: %s\n", s->type);
} }

View File

@ -3,13 +3,14 @@
#include <stdlib.h> #include <stdlib.h>
#include <stdio.h> #include <stdio.h>
softmax_layer *make_softmax_layer(int inputs) softmax_layer *make_softmax_layer(int batch, int inputs)
{ {
fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); fprintf(stderr, "Softmax Layer: %d inputs\n", inputs);
softmax_layer *layer = calloc(1, sizeof(softmax_layer)); softmax_layer *layer = calloc(1, sizeof(softmax_layer));
layer->batch = batch;
layer->inputs = inputs; layer->inputs = inputs;
layer->output = calloc(inputs, sizeof(float)); layer->output = calloc(inputs*batch, sizeof(float));
layer->delta = calloc(inputs, sizeof(float)); layer->delta = calloc(inputs*batch, sizeof(float));
return layer; return layer;
} }
@ -28,28 +29,30 @@ void forward_softmax_layer(const softmax_layer layer, float *input)
*/ */
void forward_softmax_layer(const softmax_layer layer, float *input) void forward_softmax_layer(const softmax_layer layer, float *input)
{ {
int i; int i,b;
for(b = 0; b < layer.batch; ++b){
float sum = 0; float sum = 0;
float largest = 0; float largest = 0;
for(i = 0; i < layer.inputs; ++i){ for(i = 0; i < layer.inputs; ++i){
if(input[i] > largest) largest = input[i]; if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs];
} }
for(i = 0; i < layer.inputs; ++i){ for(i = 0; i < layer.inputs; ++i){
sum += exp(input[i]-largest); sum += exp(input[i+b*layer.inputs]-largest);
//printf("%f, ", input[i]); //printf("%f, ", input[i]);
} }
//printf("\n"); //printf("\n");
if(sum) sum = largest+log(sum); if(sum) sum = largest+log(sum);
else sum = largest-100; else sum = largest-100;
for(i = 0; i < layer.inputs; ++i){ for(i = 0; i < layer.inputs; ++i){
layer.output[i] = exp(input[i]-sum); layer.output[i+b*layer.inputs] = exp(input[i+b*layer.inputs]-sum);
}
} }
} }
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) void backward_softmax_layer(const softmax_layer layer, float *input, float *delta)
{ {
int i; int i;
for(i = 0; i < layer.inputs; ++i){ for(i = 0; i < layer.inputs*layer.batch; ++i){
delta[i] = layer.delta[i]; delta[i] = layer.delta[i];
} }
} }

View File

@ -3,11 +3,12 @@
typedef struct { typedef struct {
int inputs; int inputs;
int batch;
float *delta; float *delta;
float *output; float *output;
} softmax_layer; } softmax_layer;
softmax_layer *make_softmax_layer(int inputs); softmax_layer *make_softmax_layer(int batch, int inputs);
void forward_softmax_layer(const softmax_layer layer, float *input); void forward_softmax_layer(const softmax_layer layer, float *input);
void backward_softmax_layer(const softmax_layer layer, float *input, float *delta); void backward_softmax_layer(const softmax_layer layer, float *input, float *delta);

View File

@ -77,7 +77,7 @@ void verify_convolutional_layer()
int size = 3; int size = 3;
float eps = .00000001; float eps = .00000001;
image test = make_random_image(5,5, 1); image test = make_random_image(5,5, 1);
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, RELU);
image out = get_convolutional_image(layer); image out = get_convolutional_image(layer);
float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
@ -200,7 +200,7 @@ void train_full()
while(1){ while(1){
i += 1000; i += 1000;
data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256); data train = load_data_image_pathfile_random("images/assira/train.list", 1000, labels, 2, 256, 256);
image im = float_to_image(256, 256, 3,train.X.vals[0]); //image im = float_to_image(256, 256, 3,train.X.vals[0]);
//visualize_network(net); //visualize_network(net);
//cvWaitKey(100); //cvWaitKey(100);
//show_image(im, "input"); //show_image(im, "input");
@ -247,30 +247,75 @@ void test_full()
fclose(fp); fclose(fp);
} }
void test_cifar10()
{
data test = load_cifar10_data("images/cifar10/test_batch.bin");
scale_data_rows(test, 1./255);
network net = parse_network_cfg("cfg/cifar10.cfg");
int count = 0;
float lr = .000005;
float momentum = .99;
float decay = 0.001;
decay = 0;
int batch = 10000;
while(++count <= 10000){
char buff[256];
sprintf(buff, "images/cifar10/data_batch_%d.bin", rand()%5+1);
data train = load_cifar10_data(buff);
scale_data_rows(train, 1./255);
train_network_sgd(net, train, batch, lr, momentum, decay);
//printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
float test_acc = network_accuracy(net, test);
printf("%5f %5f\n",(double)count*batch/train.X.rows/5, 1-test_acc);
free_data(train);
}
}
void test_vince()
{
network net = parse_network_cfg("cfg/vince.cfg");
data train = load_categorical_data_csv("images/vince.txt", 144, 2);
normalize_data_rows(train);
int count = 0;
float lr = .00005;
float momentum = .9;
float decay = 0.0001;
decay = 0;
int batch = 10000;
while(++count <= 10000){
float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
}
}
void test_nist() void test_nist()
{ {
srand(444444); srand(444444);
srand(888888); srand(888888);
network net = parse_network_cfg("nist.cfg"); network net = parse_network_cfg("cfg/nist_basic.cfg");
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
normalize_data_rows(train); normalize_data_rows(train);
normalize_data_rows(test); normalize_data_rows(test);
//randomize_data(train); //randomize_data(train);
int count = 0; int count = 0;
float lr = .0005; float lr = .00005;
float momentum = .9; float momentum = .9;
float decay = 0.001; float decay = 0.0001;
clock_t start = clock(), end; decay = 0;
while(++count <= 100){ //clock_t start = clock(), end;
//visualize_network(net); int batch = 10000;
float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); while(++count <= 10000){
printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay); float loss = train_network_sgd(net, train, batch, lr, momentum, decay);
end = clock(); printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); //printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*1000, loss, lr, momentum, decay);
start=end; //end = clock();
//cvWaitKey(100); //printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
//lr /= 2; //start=end;
/*
if(count%5 == 0){ if(count%5 == 0){
float train_acc = network_accuracy(net, train); float train_acc = network_accuracy(net, train);
fprintf(stderr, "\nTRAIN: %f\n", train_acc); fprintf(stderr, "\nTRAIN: %f\n", train_acc);
@ -279,6 +324,7 @@ void test_nist()
printf("%d, %f, %f\n", count, train_acc, test_acc); printf("%d, %f, %f\n", count, train_acc, test_acc);
//lr *= .5; //lr *= .5;
} }
*/
} }
} }
@ -439,91 +485,35 @@ image features_output_size(network net, IplImage *src, int outh, int outw)
{ {
int h = voc_size(outh); int h = voc_size(outh);
int w = voc_size(outw); int w = voc_size(outw);
printf("%d %d\n", h, w); fprintf(stderr, "%d %d\n", h, w);
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
cvResize(src, sized, CV_INTER_LINEAR); cvResize(src, sized, CV_INTER_LINEAR);
image im = ipl_to_image(sized); image im = ipl_to_image(sized);
reset_network_size(net, im.h, im.w, im.c); resize_network(net, im.h, im.w, im.c);
forward_network(net, im.data); forward_network(net, im.data);
image out = get_network_image_layer(net, 6); image out = get_network_image_layer(net, 6);
//printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
free_image(im); free_image(im);
cvReleaseImage(&sized); cvReleaseImage(&sized);
return copy_image(out); return copy_image(out);
} }
void features_VOC(int part, int total) void features_VOC_image_size(char *image_path, int h, int w)
{ {
int i,j, count = 0; int j;
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); network net = parse_network_cfg("cfg/voc_imagenet.cfg");
char *path_file = "images/VOC2012/all_paths.txt"; fprintf(stderr, "%s\n", image_path);
char *out_dir = "voc_features/";
list *paths = get_paths(path_file);
node *n = paths->front;
int size = paths->size;
for(count = 0; count < part*size/total; ++count) n = n->next;
while(n && count++ < (part+1)*size/total){
char *path = (char *)n->val;
char buff[1024];
sprintf(buff, "%s%s.txt",out_dir, path);
printf("%s\n", path);
FILE *fp = fopen(buff, "w");
if(fp == 0) file_error(buff);
IplImage* src = 0; IplImage* src = 0;
if( (src = cvLoadImage(path,-1)) == 0 ) if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
{ image out = features_output_size(net, src, h, w);
printf("Cannot load file image %s\n", path);
exit(0);
}
int w = src->width;
int h = src->height;
int sbin = 8;
int interval = 10;
double scale = pow(2., 1./interval);
int m = (w<h)?w:h;
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
image *ims = calloc(max_scale+interval, sizeof(image));
for(i = 0; i < interval; ++i){
double factor = 1./pow(scale, i);
double ih = round(h*factor);
double iw = round(w*factor);
int ex_h = round(ih/4.) - 2;
int ex_w = round(iw/4.) - 2;
ims[i] = features_output_size(net, src, ex_h, ex_w);
ih = round(h*factor);
iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
for(j = i+interval; j < max_scale; j += interval){
factor /= 2.;
ih = round(h*factor);
iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
}
}
for(i = 0; i < max_scale+interval; ++i){
image out = ims[i];
//printf("%d, %d\n", out.h, out.w);
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
for(j = 0; j < out.c*out.h*out.w; ++j){ for(j = 0; j < out.c*out.h*out.w; ++j){
if(j != 0)fprintf(fp, ","); if(j != 0) printf(",");
fprintf(fp, "%g", out.data[j]); printf("%g", out.data[j]);
} }
fprintf(fp, "\n"); printf("\n");
free_image(out); free_image(out);
}
free(ims);
fclose(fp);
cvReleaseImage(&src); cvReleaseImage(&src);
n = n->next;
}
} }
void features_VOC_image(char *image_file, char *image_dir, char *out_dir) void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
@ -531,9 +521,9 @@ void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
int i,j; int i,j;
network net = parse_network_cfg("cfg/voc_imagenet.cfg"); network net = parse_network_cfg("cfg/voc_imagenet.cfg");
char image_path[1024]; char image_path[1024];
sprintf(image_path, "%s%s",image_dir, image_file); sprintf(image_path, "%s/%s",image_dir, image_file);
char out_path[1024]; char out_path[1024];
sprintf(out_path, "%s%s.txt",out_dir, image_file); sprintf(out_path, "%s/%s.txt",out_dir, image_file);
printf("%s\n", image_file); printf("%s\n", image_file);
FILE *fp = fopen(out_path, "w"); FILE *fp = fopen(out_path, "w");
if(fp == 0) file_error(out_path); if(fp == 0) file_error(out_path);
@ -543,10 +533,11 @@ void features_VOC_image(char *image_file, char *image_dir, char *out_dir)
int w = src->width; int w = src->width;
int h = src->height; int h = src->height;
int sbin = 8; int sbin = 8;
int interval = 10; int interval = 4;
double scale = pow(2., 1./interval); double scale = pow(2., 1./interval);
int m = (w<h)?w:h; int m = (w<h)?w:h;
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale)); int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
if(max_scale < interval) error("max_scale must be >= interval");
image *ims = calloc(max_scale+interval, sizeof(image)); image *ims = calloc(max_scale+interval, sizeof(image));
for(i = 0; i < interval; ++i){ for(i = 0; i < interval; ++i){
@ -642,10 +633,13 @@ int main(int argc, char *argv[])
//test_split(); //test_split();
//test_ensemble(); //test_ensemble();
//test_nist(); //test_nist();
//test_cifar10();
//test_vince();
//test_full(); //test_full();
//train_VOC(); //train_VOC();
features_VOC_image(argv[1], argv[2], argv[3]); //features_VOC_image(argv[1], argv[2], argv[3]);
printf("Success!\n"); features_VOC_image_size(argv[1], atoi(argv[2]), atoi(argv[3]));
fprintf(stderr, "Success!\n");
//test_random_preprocess(); //test_random_preprocess();
//test_random_classify(); //test_random_classify();
//test_parser(); //test_parser();

BIN
test.jpg

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB