mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
Fixed memory leak in DLL, added load_image() & free_image(), added read_names_from_file()
This commit is contained in:
@ -28,8 +28,8 @@ void free_layer(layer l)
|
||||
|
||||
#ifdef GPU
|
||||
if(l.indexes_gpu) cuda_free((float *)l.indexes_gpu);
|
||||
if(l.weights_gpu) cuda_free(l.weights_gpu);
|
||||
if(l.weight_updates_gpu) cuda_free(l.weight_updates_gpu);
|
||||
//if(l.weights_gpu) cuda_free(l.weights_gpu); // duplicated
|
||||
//if(l.weight_updates_gpu) cuda_free(l.weight_updates_gpu); // duplicated
|
||||
if(l.col_image_gpu) cuda_free(l.col_image_gpu);
|
||||
if(l.weights_gpu) cuda_free(l.weights_gpu);
|
||||
if(l.biases_gpu) cuda_free(l.biases_gpu);
|
||||
|
@ -1,6 +1,7 @@
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
//#define OPENCV
|
||||
|
||||
@ -21,21 +22,31 @@ void draw_boxes(cv::Mat mat_img, std::vector<bbox_t> result_vec) {
|
||||
}
|
||||
#endif // OPENCV
|
||||
|
||||
|
||||
void show_result(std::vector<bbox_t> result_vec) {
|
||||
void show_result(std::vector<bbox_t> const result_vec, std::vector<std::string> const obj_names) {
|
||||
for (auto &i : result_vec) {
|
||||
if (obj_names.size() > i.obj_id) std::cout << obj_names[i.obj_id] << " - ";
|
||||
std::cout << "obj_id = " << i.obj_id << " - x = " << i.x << ", y = " << i.y
|
||||
<< ", w = " << i.w << ", h = " << i.h
|
||||
<< ", prob = " << i.prob << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::string> objects_names_from_file(std::string const filename) {
|
||||
std::ifstream file(filename);
|
||||
std::vector<std::string> file_lines;
|
||||
if (!file.is_open()) return file_lines;
|
||||
for(std::string line; file >> line;) file_lines.push_back(line);
|
||||
std::cout << "object names loaded \n";
|
||||
return file_lines;
|
||||
}
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
Detector detector("yolo-voc.cfg", "yolo-voc.weights");
|
||||
|
||||
auto obj_names = objects_names_from_file("data/voc.names");
|
||||
|
||||
while (true)
|
||||
{
|
||||
std::string filename;
|
||||
@ -43,14 +54,22 @@ int main()
|
||||
std::cin >> filename;
|
||||
if (filename.size() == 0) break;
|
||||
|
||||
try {
|
||||
#ifdef OPENCV
|
||||
cv::Mat mat_img = cv::imread(filename);
|
||||
std::vector<bbox_t> result_vec = detector.detect(mat_img);
|
||||
draw_boxes(mat_img, result_vec);
|
||||
cv::Mat mat_img = cv::imread(filename);
|
||||
std::vector<bbox_t> result_vec = detector.detect(mat_img);
|
||||
draw_boxes(mat_img, result_vec);
|
||||
#else
|
||||
std::vector<bbox_t> result_vec = detector.detect(filename);
|
||||
//std::vector<bbox_t> result_vec = detector.detect(filename);
|
||||
|
||||
auto img = detector.load_image(filename);
|
||||
std::vector<bbox_t> result_vec = detector.detect(img);
|
||||
detector.free_image(img);
|
||||
#endif
|
||||
show_result(result_vec);
|
||||
show_result(result_vec, obj_names);
|
||||
}
|
||||
catch (std::exception &e) { std::cerr << "exception: " << e.what() << "\n"; getchar(); }
|
||||
catch (...) { std::cerr << "unknown exception \n"; getchar(); }
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
@ -1,6 +1,5 @@
|
||||
#include "yolo_v2_class.hpp"
|
||||
|
||||
|
||||
#include "network.h"
|
||||
|
||||
extern "C" {
|
||||
@ -12,40 +11,32 @@ extern "C" {
|
||||
#include "box.h"
|
||||
#include "image.h"
|
||||
#include "demo.h"
|
||||
|
||||
#include "option_list.h"
|
||||
|
||||
#include "stb_image.h"
|
||||
}
|
||||
//#include <sys/time.h>
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
#define FRAMES 3
|
||||
#define ROI_PER_DETECTOR 100
|
||||
|
||||
|
||||
struct detector_gpu_t{
|
||||
float **probs;
|
||||
box *boxes;
|
||||
network net;
|
||||
//image det;
|
||||
//image det_s;
|
||||
image images[FRAMES];
|
||||
float *avg;
|
||||
float *predictions[FRAMES];
|
||||
};
|
||||
|
||||
|
||||
|
||||
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
|
||||
{
|
||||
int old_gpu_index;
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
|
||||
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
||||
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
|
||||
cudaSetDevice(gpu_id);
|
||||
@ -77,23 +68,63 @@ YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_file
|
||||
cudaSetDevice(old_gpu_index);
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API Detector::~Detector()
|
||||
{
|
||||
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
||||
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
||||
|
||||
free(detector_gpu.boxes);
|
||||
free(detector_gpu.avg);
|
||||
free(detector_gpu.predictions);
|
||||
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
|
||||
for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
|
||||
for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
|
||||
|
||||
free(detector_gpu.boxes);
|
||||
free(detector_gpu.probs);
|
||||
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
|
||||
|
||||
int old_gpu_index;
|
||||
cudaGetDevice(&old_gpu_index);
|
||||
cudaSetDevice(detector_gpu.net.gpu_index);
|
||||
|
||||
free_network(detector_gpu.net);
|
||||
|
||||
cudaSetDevice(old_gpu_index);
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
|
||||
{
|
||||
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
|
||||
*image_ptr = load_image(image_filename);
|
||||
return detect(*image_ptr, thresh);
|
||||
}
|
||||
|
||||
static image load_image_stb(char *filename, int channels)
|
||||
{
|
||||
int w, h, c;
|
||||
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
|
||||
if (!data)
|
||||
throw std::runtime_error("file not found");
|
||||
if (channels) c = channels;
|
||||
int i, j, k;
|
||||
image im = make_image(w, h, c);
|
||||
for (k = 0; k < c; ++k) {
|
||||
for (j = 0; j < h; ++j) {
|
||||
for (i = 0; i < w; ++i) {
|
||||
int dst_index = i + w*j + w*h*k;
|
||||
int src_index = k + c*i + c*w*j;
|
||||
im.data[dst_index] = (float)data[src_index] / 255.;
|
||||
}
|
||||
}
|
||||
}
|
||||
free(data);
|
||||
return im;
|
||||
}
|
||||
|
||||
YOLODLL_API image_t Detector::load_image(std::string image_filename)
|
||||
{
|
||||
char *input = const_cast<char *>(image_filename.data());
|
||||
image im = load_image_color(input, 0, 0);
|
||||
image im = load_image_stb(input, 3);
|
||||
|
||||
image_t img;
|
||||
img.c = im.c;
|
||||
@ -101,10 +132,17 @@ YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, flo
|
||||
img.h = im.h;
|
||||
img.w = im.w;
|
||||
|
||||
return detect(img, thresh);
|
||||
return img;
|
||||
}
|
||||
|
||||
|
||||
YOLODLL_API void Detector::free_image(image_t m)
|
||||
{
|
||||
if (m.data) {
|
||||
free(m.data);
|
||||
}
|
||||
}
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
||||
{
|
||||
|
||||
@ -126,10 +164,6 @@ YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
||||
image sized = resize_image(im, net.w, net.h);
|
||||
layer l = net.layers[net.n - 1];
|
||||
|
||||
//box *boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
||||
//float **probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
||||
// (int j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
|
||||
|
||||
float *X = sized.data;
|
||||
|
||||
network_predict(net, X);
|
||||
@ -159,6 +193,9 @@ YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
||||
}
|
||||
}
|
||||
|
||||
if(sized.data)
|
||||
free(sized.data);
|
||||
|
||||
cudaSetDevice(old_gpu_index);
|
||||
|
||||
return bbox_vec;
|
||||
|
@ -15,17 +15,17 @@
|
||||
#endif
|
||||
|
||||
struct bbox_t {
|
||||
unsigned int x, y, w, h;
|
||||
float prob;
|
||||
unsigned int obj_id;
|
||||
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
|
||||
float prob; // confidence - probability that the object was found correctly
|
||||
unsigned int obj_id; // class of object - from range [0, classes-1]
|
||||
};
|
||||
|
||||
typedef struct {
|
||||
int h;
|
||||
int w;
|
||||
int c;
|
||||
float *data;
|
||||
} image_t;
|
||||
struct image_t {
|
||||
int h; // height
|
||||
int w; // width
|
||||
int c; // number of chanels (3 - for RGB)
|
||||
float *data; // pointer to the image data
|
||||
};
|
||||
|
||||
|
||||
class Detector {
|
||||
@ -37,11 +37,15 @@ public:
|
||||
|
||||
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2);
|
||||
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2);
|
||||
static YOLODLL_API image_t load_image(std::string image_filename);
|
||||
static YOLODLL_API void free_image(image_t m);
|
||||
|
||||
#ifdef OPENCV
|
||||
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2)
|
||||
{
|
||||
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); } );
|
||||
if(mat.data == NULL)
|
||||
throw std::runtime_error("file not found");
|
||||
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
|
||||
*image_ptr = mat_to_image(mat);
|
||||
return detect(*image_ptr, thresh);
|
||||
}
|
||||
@ -102,12 +106,6 @@ private:
|
||||
}
|
||||
}
|
||||
|
||||
static void free_image(image_t m)
|
||||
{
|
||||
if (m.data) {
|
||||
free(m.data);
|
||||
}
|
||||
}
|
||||
#endif // OPENCV
|
||||
};
|
||||
|
||||
|
Reference in New Issue
Block a user