mirror of
https://github.com/pjreddie/darknet.git
synced 2023-08-10 21:13:14 +03:00
OK SHOULD I START WORKING ON CVPR OR WHAT?
This commit is contained in:
@ -3,16 +3,64 @@
|
||||
#include <sys/time.h>
|
||||
#include <assert.h>
|
||||
|
||||
void train_attention(char *datacfg, char *cfgfile, char *weightfile, char *cfgfile2, char *weightfile2, int *gpus, int ngpus, int clear)
|
||||
void extend_data_truth(data *d, int n, float val)
|
||||
{
|
||||
int i;
|
||||
int i, j;
|
||||
for(i = 0; i < d->y.rows; ++i){
|
||||
d->y.vals[i] = realloc(d->y.vals[i], (d->y.cols+n)*sizeof(float));
|
||||
for(j = 0; j < n; ++j){
|
||||
d->y.vals[i][d->y.cols + j] = val;
|
||||
}
|
||||
}
|
||||
d->y.cols += n;
|
||||
}
|
||||
|
||||
float avg_loss = -1;
|
||||
matrix network_loss_data(network *net, data test)
|
||||
{
|
||||
int i,b;
|
||||
int k = 1;
|
||||
matrix pred = make_matrix(test.X.rows, k);
|
||||
float *X = calloc(net->batch*test.X.cols, sizeof(float));
|
||||
float *y = calloc(net->batch*test.y.cols, sizeof(float));
|
||||
for(i = 0; i < test.X.rows; i += net->batch){
|
||||
for(b = 0; b < net->batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
|
||||
memcpy(y+b*test.y.cols, test.y.vals[i+b], test.y.cols*sizeof(float));
|
||||
}
|
||||
|
||||
network orig = *net;
|
||||
net->input = X;
|
||||
net->truth = y;
|
||||
net->train = 0;
|
||||
net->delta = 0;
|
||||
forward_network(net);
|
||||
*net = orig;
|
||||
|
||||
float *delta = net->layers[net->n-1].output;
|
||||
for(b = 0; b < net->batch; ++b){
|
||||
if(i+b == test.X.rows) break;
|
||||
int t = max_index(y + b*test.y.cols, 1000);
|
||||
float err = sum_array(delta + b*net->outputs, net->outputs);
|
||||
pred.vals[i+b][0] = -err;
|
||||
//pred.vals[i+b][0] = 1-delta[b*net->outputs + t];
|
||||
}
|
||||
}
|
||||
free(X);
|
||||
free(y);
|
||||
return pred;
|
||||
}
|
||||
|
||||
void train_attention(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
float avg_cls_loss = -1;
|
||||
float avg_att_loss = -1;
|
||||
char *base = basecfg(cfgfile);
|
||||
printf("%s\n", base);
|
||||
printf("%d\n", ngpus);
|
||||
network **attnets = calloc(ngpus, sizeof(network*));
|
||||
network **clsnets = calloc(ngpus, sizeof(network*));
|
||||
network **nets = calloc(ngpus, sizeof(network*));
|
||||
|
||||
srand(time(0));
|
||||
int seed = rand();
|
||||
@ -21,14 +69,11 @@ void train_attention(char *datacfg, char *cfgfile, char *weightfile, char *cfgfi
|
||||
#ifdef GPU
|
||||
cuda_set_device(gpus[i]);
|
||||
#endif
|
||||
attnets[i] = load_network(cfgfile, weightfile, clear);
|
||||
attnets[i]->learning_rate *= ngpus;
|
||||
clsnets[i] = load_network(cfgfile2, weightfile2, clear);
|
||||
clsnets[i]->learning_rate *= ngpus;
|
||||
nets[i] = load_network(cfgfile, weightfile, clear);
|
||||
nets[i]->learning_rate *= ngpus;
|
||||
}
|
||||
srand(time(0));
|
||||
network *net = attnets[0];
|
||||
//network *clsnet = clsnets[0];
|
||||
network *net = nets[0];
|
||||
|
||||
int imgs = net->batch * net->subdivisions * ngpus;
|
||||
|
||||
@ -47,15 +92,18 @@ void train_attention(char *datacfg, char *cfgfile, char *weightfile, char *cfgfi
|
||||
int N = plist->size;
|
||||
double time;
|
||||
|
||||
int divs=3;
|
||||
int size=2;
|
||||
|
||||
load_args args = {0};
|
||||
args.w = 4*net->w;
|
||||
args.h = 4*net->h;
|
||||
args.size = 4*net->w;
|
||||
args.w = divs*net->w/size;
|
||||
args.h = divs*net->h/size;
|
||||
args.size = divs*net->w/size;
|
||||
args.threads = 32;
|
||||
args.hierarchy = net->hierarchy;
|
||||
|
||||
args.min = net->min_ratio*net->w;
|
||||
args.max = net->max_ratio*net->w;
|
||||
args.min = net->min_ratio*args.w;
|
||||
args.max = net->max_ratio*args.w;
|
||||
args.angle = net->angle;
|
||||
args.aspect = net->aspect;
|
||||
args.exposure = net->exposure;
|
||||
@ -83,25 +131,81 @@ void train_attention(char *datacfg, char *cfgfile, char *weightfile, char *cfgfi
|
||||
train = buffer;
|
||||
load_thread = load_data(args);
|
||||
data resized = resize_data(train, net->w, net->h);
|
||||
extend_data_truth(&resized, divs*divs, 0);
|
||||
data *tiles = tile_data(train, divs, size);
|
||||
|
||||
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
|
||||
time = what_time_is_it_now();
|
||||
|
||||
float loss = 0;
|
||||
#ifdef GPU
|
||||
if(ngpus == 1){
|
||||
loss = train_network(net, train);
|
||||
} else {
|
||||
loss = train_networks(attnets, ngpus, train, 4);
|
||||
float aloss = 0;
|
||||
float closs = 0;
|
||||
int z;
|
||||
for (i = 0; i < divs*divs/ngpus; ++i) {
|
||||
#pragma omp parallel for
|
||||
for(j = 0; j < ngpus; ++j){
|
||||
int index = i*ngpus + j;
|
||||
extend_data_truth(tiles+index, divs*divs, SECRET_NUM);
|
||||
matrix deltas = network_loss_data(nets[j], tiles[index]);
|
||||
for(z = 0; z < resized.y.rows; ++z){
|
||||
resized.y.vals[z][train.y.cols + index] = deltas.vals[z][0];
|
||||
}
|
||||
free_matrix(deltas);
|
||||
}
|
||||
}
|
||||
int *inds = calloc(resized.y.rows, sizeof(int));
|
||||
for(z = 0; z < resized.y.rows; ++z){
|
||||
int index = max_index(resized.y.vals[z] + train.y.cols, divs*divs);
|
||||
inds[z] = index;
|
||||
for(i = 0; i < divs*divs; ++i){
|
||||
resized.y.vals[z][train.y.cols + i] = (i == index)? 1 : 0;
|
||||
}
|
||||
}
|
||||
data best = select_data(tiles, inds);
|
||||
free(inds);
|
||||
#ifdef GPU
|
||||
if (ngpus == 1) {
|
||||
closs = train_network(net, best);
|
||||
} else {
|
||||
closs = train_networks(nets, ngpus, best, 4);
|
||||
}
|
||||
#endif
|
||||
for (i = 0; i < divs*divs; ++i) {
|
||||
printf("%.2f ", resized.y.vals[0][train.y.cols + i]);
|
||||
if((i+1)%divs == 0) printf("\n");
|
||||
free_data(tiles[i]);
|
||||
}
|
||||
free_data(best);
|
||||
printf("\n");
|
||||
image im = float_to_image(64,64,3,resized.X.vals[0]);
|
||||
//show_image(im, "orig");
|
||||
//cvWaitKey(100);
|
||||
/*
|
||||
image im1 = float_to_image(64,64,3,tiles[i].X.vals[0]);
|
||||
image im2 = float_to_image(64,64,3,resized.X.vals[0]);
|
||||
show_image(im1, "tile");
|
||||
show_image(im2, "res");
|
||||
*/
|
||||
#ifdef GPU
|
||||
if (ngpus == 1) {
|
||||
aloss = train_network(net, resized);
|
||||
} else {
|
||||
aloss = train_networks(nets, ngpus, resized, 4);
|
||||
}
|
||||
#else
|
||||
loss = train_network(net, train);
|
||||
#endif
|
||||
for(i = 0; i < divs*divs; ++i){
|
||||
printf("%f ", nets[0]->output[1000 + i]);
|
||||
if ((i+1) % divs == 0) printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
free_data(resized);
|
||||
if(avg_loss == -1) avg_loss = loss;
|
||||
avg_loss = avg_loss*.9 + loss*.1;
|
||||
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
|
||||
free_data(train);
|
||||
if(avg_cls_loss == -1) avg_cls_loss = closs;
|
||||
if(avg_att_loss == -1) avg_att_loss = aloss;
|
||||
avg_cls_loss = avg_cls_loss*.9 + closs*.1;
|
||||
avg_att_loss = avg_att_loss*.9 + aloss*.1;
|
||||
|
||||
printf("%ld, %.3f: Att: %f, %f avg, Class: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, aloss, avg_att_loss, closs, avg_cls_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
|
||||
if(*net->seen/N > epoch){
|
||||
epoch = *net->seen/N;
|
||||
char buff[256];
|
||||
@ -152,6 +256,11 @@ void validate_attention_single(char *datacfg, char *filename, char *weightfile)
|
||||
float avg_acc = 0;
|
||||
float avg_topk = 0;
|
||||
int *indexes = calloc(topk, sizeof(int));
|
||||
int divs = 4;
|
||||
int size = 2;
|
||||
int extra = 0;
|
||||
float *avgs = calloc(classes, sizeof(float));
|
||||
int *inds = calloc(divs*divs, sizeof(int));
|
||||
|
||||
for(i = 0; i < m; ++i){
|
||||
int class = -1;
|
||||
@ -163,14 +272,38 @@ void validate_attention_single(char *datacfg, char *filename, char *weightfile)
|
||||
}
|
||||
}
|
||||
image im = load_image_color(paths[i], 0, 0);
|
||||
image resized = resize_min(im, net->w);
|
||||
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
|
||||
image resized = resize_min(im, net->w*divs/size);
|
||||
image crop = crop_image(resized, (resized.w - net->w*divs/size)/2, (resized.h - net->h*divs/size)/2, net->w*divs/size, net->h*divs/size);
|
||||
image rcrop = resize_image(crop, net->w, net->h);
|
||||
//show_image(im, "orig");
|
||||
//show_image(crop, "cropped");
|
||||
//cvWaitKey(0);
|
||||
float *pred = network_predict(net, crop.data);
|
||||
float *pred = network_predict(net, rcrop.data);
|
||||
//pred[classes + 56] = 0;
|
||||
for(j = 0; j < divs*divs; ++j){
|
||||
printf("%.2f ", pred[classes + j]);
|
||||
if((j+1)%divs == 0) printf("\n");
|
||||
}
|
||||
printf("\n");
|
||||
copy_cpu(classes, pred, 1, avgs, 1);
|
||||
top_k(pred + classes, divs*divs, divs*divs, inds);
|
||||
show_image(crop, "crop");
|
||||
for(j = 0; j < extra; ++j){
|
||||
int index = inds[j];
|
||||
int row = index / divs;
|
||||
int col = index % divs;
|
||||
int y = row * crop.h / divs - (net->h - crop.h/divs)/2;
|
||||
int x = col * crop.w / divs - (net->w - crop.w/divs)/2;
|
||||
printf("%d %d %d %d\n", row, col, y, x);
|
||||
image tile = crop_image(crop, x, y, net->w, net->h);
|
||||
float *pred = network_predict(net, tile.data);
|
||||
axpy_cpu(classes, 1., pred, 1, avgs, 1);
|
||||
show_image(tile, "tile");
|
||||
cvWaitKey(10);
|
||||
}
|
||||
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
|
||||
|
||||
if(rcrop.data != resized.data) free_image(rcrop);
|
||||
if(resized.data != im.data) free_image(resized);
|
||||
free_image(im);
|
||||
free_image(crop);
|
||||
@ -318,7 +451,7 @@ void run_attention(int argc, char **argv)
|
||||
char *filename = (argc > 6) ? argv[6]: 0;
|
||||
char *layer_s = (argc > 7) ? argv[7]: 0;
|
||||
if(0==strcmp(argv[2], "predict")) predict_attention(data, cfg, weights, filename, top);
|
||||
else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, filename, layer_s, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, gpus, ngpus, clear);
|
||||
else if(0==strcmp(argv[2], "valid")) validate_attention_single(data, cfg, weights);
|
||||
else if(0==strcmp(argv[2], "validmulti")) validate_attention_multi(data, cfg, weights);
|
||||
}
|
||||
|
Reference in New Issue
Block a user