Added include/darknet.h

This commit is contained in:
AlexeyAB
2019-01-06 23:51:38 +03:00
parent c56931dd75
commit 3ff5084590
30 changed files with 1823 additions and 308 deletions

793
include/darknet.h Normal file
View File

@ -0,0 +1,793 @@
#ifndef DARKNET_API
#define DARKNET_API
#if defined(_MSC_VER) && _MSC_VER < 1900
#define inline __inline
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <pthread.h>
#include <stdint.h>
#ifdef LIB_EXPORTS
#if defined(_MSC_VER)
#define LIB_API __declspec(dllexport)
#else
#define LIB_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define LIB_API
#else
#define LIB_API
#endif
#endif
#ifdef GPU
#define BLOCK 512
#include "cuda_runtime.h"
#include "curand.h"
#include "cublas_v2.h"
#ifdef CUDNN
#include "cudnn.h"
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct network;
typedef struct network network;
struct network_state;
typedef struct network_state;
struct layer;
typedef struct layer layer;
struct image;
typedef struct image image;
struct detection;
typedef struct detection detection;
struct load_args;
typedef struct load_args load_args;
struct data;
typedef struct data data;
struct metadata;
typedef struct metadata metadata;
struct tree;
typedef struct tree tree;
#define SECRET_NUM -1234
extern int gpu_index;
// option_list.h
typedef struct metadata {
int classes;
char **names;
} metadata;
// tree.h
typedef struct tree {
int *leaf;
int n;
int *parent;
int *child;
int *group;
char **name;
int groups;
int *group_size;
int *group_offset;
} tree;
// activations.h
typedef enum {
LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU
}ACTIVATION;
// image.h
typedef enum{
PNG, BMP, TGA, JPG
} IMTYPE;
// activations.h
typedef enum{
MULT, ADD, SUB, DIV
} BINARY_ACTIVATION;
// layer.h
typedef enum {
CONVOLUTIONAL,
DECONVOLUTIONAL,
CONNECTED,
MAXPOOL,
SOFTMAX,
DETECTION,
DROPOUT,
CROP,
ROUTE,
COST,
NORMALIZATION,
AVGPOOL,
LOCAL,
SHORTCUT,
ACTIVE,
RNN,
GRU,
LSTM,
CRNN,
BATCHNORM,
NETWORK,
XNOR,
REGION,
YOLO,
ISEG,
REORG,
REORG_OLD,
UPSAMPLE,
LOGXENT,
L2NORM,
BLANK
} LAYER_TYPE;
// layer.h
typedef enum{
SSE, MASKED, L1, SEG, SMOOTH,WGAN
} COST_TYPE;
// layer.h
typedef struct update_args {
int batch;
float learning_rate;
float momentum;
float decay;
int adam;
float B1;
float B2;
float eps;
int t;
} update_args;
// layer.h
struct layer {
LAYER_TYPE type;
ACTIVATION activation;
COST_TYPE cost_type;
void(*forward) (struct layer, struct network_state);
void(*backward) (struct layer, struct network_state);
void(*update) (struct layer, int, float, float, float);
void(*forward_gpu) (struct layer, struct network_state);
void(*backward_gpu) (struct layer, struct network_state);
void(*update_gpu) (struct layer, int, float, float, float);
int batch_normalize;
int shortcut;
int batch;
int forced;
int flipped;
int inputs;
int outputs;
int nweights;
int nbiases;
int extra;
int truths;
int h, w, c;
int out_h, out_w, out_c;
int n;
int max_boxes;
int groups;
int size;
int side;
int stride;
int reverse;
int flatten;
int spatial;
int pad;
int sqrt;
int flip;
int index;
int binary;
int xnor;
int use_bin_output;
int steps;
int hidden;
int truth;
float smooth;
float dot;
float angle;
float jitter;
float saturation;
float exposure;
float shift;
float ratio;
float learning_rate_scale;
float clip;
int focal_loss;
int noloss;
int softmax;
int classes;
int coords;
int background;
int rescore;
int objectness;
int does_cost;
int joint;
int noadjust;
int reorg;
int log;
int tanh;
int *mask;
int total;
float bflops;
int adam;
float B1;
float B2;
float eps;
int t;
float alpha;
float beta;
float kappa;
float coord_scale;
float object_scale;
float noobject_scale;
float mask_scale;
float class_scale;
int bias_match;
int random;
float ignore_thresh;
float truth_thresh;
float thresh;
float focus;
int classfix;
int absolute;
int onlyforward;
int stopbackward;
int dontload;
int dontsave;
int dontloadscales;
int numload;
float temperature;
float probability;
float scale;
char * cweights;
int * indexes;
int * input_layers;
int * input_sizes;
int * map;
int * counts;
float ** sums;
float * rand;
float * cost;
float * state;
float * prev_state;
float * forgot_state;
float * forgot_delta;
float * state_delta;
float * combine_cpu;
float * combine_delta_cpu;
float *concat;
float *concat_delta;
float *binary_weights;
float *biases;
float *bias_updates;
float *scales;
float *scale_updates;
float *weights;
float *weight_updates;
char *align_bit_weights_gpu;
float *mean_arr_gpu;
float *align_workspace_gpu;
float *transposed_align_workspace_gpu;
int align_workspace_size;
char *align_bit_weights;
float *mean_arr;
int align_bit_weights_size;
int lda_align;
int new_lda;
int bit_align;
float *col_image;
float * delta;
float * output;
float * loss;
float * squared;
float * norms;
float * spatial_mean;
float * mean;
float * variance;
float * mean_delta;
float * variance_delta;
float * rolling_mean;
float * rolling_variance;
float * x;
float * x_norm;
float * m;
float * v;
float * bias_m;
float * bias_v;
float * scale_m;
float * scale_v;
float *z_cpu;
float *r_cpu;
float *h_cpu;
float * prev_state_cpu;
float *temp_cpu;
float *temp2_cpu;
float *temp3_cpu;
float *dh_cpu;
float *hh_cpu;
float *prev_cell_cpu;
float *cell_cpu;
float *f_cpu;
float *i_cpu;
float *g_cpu;
float *o_cpu;
float *c_cpu;
float *dc_cpu;
float * binary_input;
struct layer *input_layer;
struct layer *self_layer;
struct layer *output_layer;
struct layer *reset_layer;
struct layer *update_layer;
struct layer *state_layer;
struct layer *input_gate_layer;
struct layer *state_gate_layer;
struct layer *input_save_layer;
struct layer *state_save_layer;
struct layer *input_state_layer;
struct layer *state_state_layer;
struct layer *input_z_layer;
struct layer *state_z_layer;
struct layer *input_r_layer;
struct layer *state_r_layer;
struct layer *input_h_layer;
struct layer *state_h_layer;
struct layer *wz;
struct layer *uz;
struct layer *wr;
struct layer *ur;
struct layer *wh;
struct layer *uh;
struct layer *uo;
struct layer *wo;
struct layer *uf;
struct layer *wf;
struct layer *ui;
struct layer *wi;
struct layer *ug;
struct layer *wg;
tree *softmax_tree;
size_t workspace_size;
#ifdef GPU
int *indexes_gpu;
float *z_gpu;
float *r_gpu;
float *h_gpu;
float *temp_gpu;
float *temp2_gpu;
float *temp3_gpu;
float *dh_gpu;
float *hh_gpu;
float *prev_cell_gpu;
float *cell_gpu;
float *f_gpu;
float *i_gpu;
float *g_gpu;
float *o_gpu;
float *c_gpu;
float *dc_gpu;
// adam
float *m_gpu;
float *v_gpu;
float *bias_m_gpu;
float *scale_m_gpu;
float *bias_v_gpu;
float *scale_v_gpu;
float * combine_gpu;
float * combine_delta_gpu;
float * prev_state_gpu;
float * forgot_state_gpu;
float * forgot_delta_gpu;
float * state_gpu;
float * state_delta_gpu;
float * gate_gpu;
float * gate_delta_gpu;
float * save_gpu;
float * save_delta_gpu;
float * concat_gpu;
float * concat_delta_gpu;
float *binary_input_gpu;
float *binary_weights_gpu;
float * mean_gpu;
float * variance_gpu;
float * rolling_mean_gpu;
float * rolling_variance_gpu;
float * variance_delta_gpu;
float * mean_delta_gpu;
float * col_image_gpu;
float * x_gpu;
float * x_norm_gpu;
float * weights_gpu;
float * weight_updates_gpu;
float * weight_change_gpu;
float * weights_gpu16;
float * weight_updates_gpu16;
float * biases_gpu;
float * bias_updates_gpu;
float * bias_change_gpu;
float * scales_gpu;
float * scale_updates_gpu;
float * scale_change_gpu;
float * output_gpu;
float * loss_gpu;
float * delta_gpu;
float * rand_gpu;
float * squared_gpu;
float * norms_gpu;
#ifdef CUDNN
cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
cudnnTensorDescriptor_t srcTensorDesc16, dstTensorDesc16;
cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
cudnnTensorDescriptor_t dsrcTensorDesc16, ddstTensorDesc16;
cudnnTensorDescriptor_t normTensorDesc, normDstTensorDesc, normDstTensorDescF16;
cudnnFilterDescriptor_t weightDesc, weightDesc16;
cudnnFilterDescriptor_t dweightDesc, dweightDesc16;
cudnnConvolutionDescriptor_t convDesc;
cudnnConvolutionFwdAlgo_t fw_algo, fw_algo16;
cudnnConvolutionBwdDataAlgo_t bd_algo, bd_algo16;
cudnnConvolutionBwdFilterAlgo_t bf_algo, bf_algo16;
cudnnPoolingDescriptor_t poolingDesc;
#endif // CUDNN
#endif // GPU
};
// network.h
typedef enum {
CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
} learning_rate_policy;
// network.h
typedef struct network {
int n;
int batch;
uint64_t *seen;
int *t;
float epoch;
int subdivisions;
layer *layers;
float *output;
learning_rate_policy policy;
float learning_rate;
float momentum;
float decay;
float gamma;
float scale;
float power;
int time_steps;
int step;
int max_batches;
float *scales;
int *steps;
int num_steps;
int burn_in;
int cudnn_half;
int adam;
float B1;
float B2;
float eps;
int inputs;
int outputs;
int truths;
int notruth;
int h, w, c;
int max_crop;
int min_crop;
float max_ratio;
float min_ratio;
int center;
int flip; // horizontal flip 50% probability augmentaiont for classifier training (default = 1)
float angle;
float aspect;
float exposure;
float saturation;
float hue;
int random;
int small_object;
int gpu_index;
tree *hierarchy;
float *input;
float *truth;
float *delta;
float *workspace;
int train;
int index;
float *cost;
float clip;
#ifdef GPU
//float *input_gpu;
//float *truth_gpu;
float *delta_gpu;
float *output_gpu;
float *input_state_gpu;
float **input_gpu;
float **truth_gpu;
float **input16_gpu;
float **output16_gpu;
size_t *max_input16_size;
size_t *max_output16_size;
int wait_stream;
#endif
} network;
// network.h
typedef struct network_state {
float *truth;
float *input;
float *delta;
float *workspace;
int train;
int index;
network net;
} network_state;
//typedef struct {
// int w;
// int h;
// float scale;
// float rad;
// float dx;
// float dy;
// float aspect;
//} augment_args;
// image.h
typedef struct image {
int w;
int h;
int c;
float *data;
} image;
//typedef struct {
// int w;
// int h;
// int c;
// float *data;
//} image;
// box.h
typedef struct box {
float x, y, w, h;
} box;
// box.h
typedef struct detection{
box bbox;
int classes;
float *prob;
float *mask;
float objectness;
int sort_class;
} detection;
// matrix.h
typedef struct matrix {
int rows, cols;
float **vals;
} matrix;
// data.h
typedef struct data {
int w, h;
matrix X;
matrix y;
int shallow;
int *num_boxes;
box **boxes;
} data;
// data.h
typedef enum {
CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
} data_type;
// data.h
typedef struct load_args {
int threads;
char **paths;
char *path;
int n;
int m;
char **labels;
int h;
int w;
int c; // color depth
int out_w;
int out_h;
int nh;
int nw;
int num_boxes;
int min, max, size;
int classes;
int background;
int scale;
int center;
int coords;
int small_object;
float jitter;
int flip;
float angle;
float aspect;
float saturation;
float exposure;
float hue;
data *d;
image *im;
image *resized;
data_type type;
tree *hierarchy;
} load_args;
// data.h
typedef struct box_label {
int id;
float x, y, w, h;
float left, right, top, bottom;
} box_label;
// list.h
//typedef struct node {
// void *val;
// struct node *next;
// struct node *prev;
//} node;
// list.h
//typedef struct list {
// int size;
// node *front;
// node *back;
//} list;
// -----------------------------------------------------
// parser.c
LIB_API network *load_network(char *cfg, char *weights, int clear);
LIB_API network *load_network_custom(char *cfg, char *weights, int clear, int batch);
LIB_API network *load_network(char *cfg, char *weights, int clear);
// network.c
LIB_API load_args get_base_args(network *net);
// box.h
LIB_API void do_nms_sort(detection *dets, int total, int classes, float thresh);
LIB_API void do_nms_obj(detection *dets, int total, int classes, float thresh);
// network.h
LIB_API float *network_predict(network net, float *input);
LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
LIB_API void free_detections(detection *dets, int n);
LIB_API void fuse_conv_batchnorm(network net);
LIB_API void calculate_binary_weights(network net);
LIB_API layer* get_network_layer(network* net, int i);
LIB_API detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter);
LIB_API detection *make_network_boxes(network *net, float thresh, int *num);
LIB_API void reset_rnn(network *net);
LIB_API float *network_predict_image(network *net, image im);
LIB_API float validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou, const float iou_thresh, network *existing_net);
LIB_API void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show, int calc_map);
LIB_API int network_width(network *net);
LIB_API int network_height(network *net);
LIB_API void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm);
// image.h
LIB_API image resize_image(image im, int w, int h);
LIB_API image letterbox_image(image im, int w, int h);
LIB_API void rgbgr_image(image im);
LIB_API image make_image(int w, int h, int c);
LIB_API image load_image_color(char *filename, int w, int h);
LIB_API void free_image(image m);
// layer.h
LIB_API void free_layer(layer);
// data.c
LIB_API void free_data(data d);
LIB_API pthread_t load_data(load_args args);
LIB_API pthread_t load_data_in_thread(load_args args);
// cuda.h
LIB_API void cuda_pull_array(float *x_gpu, float *x, size_t n);
LIB_API void cuda_set_device(int n);
// utils.h
LIB_API void free_ptrs(void **ptrs, int n);
LIB_API void top_k(float *a, int n, int k, int *index);
// tree.h
LIB_API tree *read_tree(char *filename);
// option_list.h
LIB_API metadata get_metadata(char *file);
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // DARKNET_API

660
include/yolo_v2_class.hpp Normal file
View File

@ -0,0 +1,660 @@
#pragma once
#ifdef LIB_EXPORTS
#if defined(_MSC_VER)
#define LIB_EXPORTS __declspec(dllexport)
#else
#define LIB_EXPORTS __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define LIB_EXPORTS __declspec(dllimport)
#else
#define LIB_EXPORTS
#endif
#endif
struct bbox_t {
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
float prob; // confidence - probability that the object was found correctly
unsigned int obj_id; // class of object - from range [0, classes-1]
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
unsigned int frames_counter;// counter of frames on which the object was detected
};
struct image_t {
int h; // height
int w; // width
int c; // number of chanels (3 - for RGB)
float *data; // pointer to the image data
};
#define C_SHARP_MAX_OBJECTS 1000
struct bbox_t_container {
bbox_t candidates[C_SHARP_MAX_OBJECTS];
};
#ifdef __cplusplus
#include <memory>
#include <vector>
#include <deque>
#include <algorithm>
#ifdef OPENCV
#include <opencv2/opencv.hpp> // C++
#include "opencv2/highgui/highgui_c.h" // C
#include "opencv2/imgproc/imgproc_c.h" // C
#endif // OPENCV
extern "C" LIB_EXPORTS int init(const char *configurationFilename, const char *weightsFilename, int gpu);
extern "C" LIB_EXPORTS int detect_image(const char *filename, bbox_t_container &container);
extern "C" LIB_EXPORTS int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container);
extern "C" LIB_EXPORTS int dispose();
extern "C" LIB_EXPORTS int get_device_count();
extern "C" LIB_EXPORTS int get_device_name(int gpu, char* deviceName);
class Detector {
std::shared_ptr<void> detector_gpu_ptr;
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
const int cur_gpu_id;
public:
float nms = .4;
bool wait_stream;
LIB_EXPORTS Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
LIB_EXPORTS ~Detector();
LIB_EXPORTS std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
LIB_EXPORTS std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
static LIB_EXPORTS image_t load_image(std::string image_filename);
static LIB_EXPORTS void free_image(image_t m);
LIB_EXPORTS int get_net_width() const;
LIB_EXPORTS int get_net_height() const;
LIB_EXPORTS int get_net_color_depth() const;
LIB_EXPORTS std::vector<bbox_t> tracking_id(std::vector<bbox_t> cur_bbox_vec, bool const change_history = true,
int const frames_story = 10, int const max_dist = 150);
std::vector<bbox_t> detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false)
{
if (img.data == NULL)
throw std::runtime_error("Image is empty");
auto detection_boxes = detect(img, thresh, use_mean);
float wk = (float)init_w / img.w, hk = (float)init_h / img.h;
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
return detection_boxes;
}
#ifdef OPENCV
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
{
if(mat.data == NULL)
throw std::runtime_error("Image is empty");
auto image_ptr = mat_to_image_resize(mat);
return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean);
}
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
{
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
cv::Size network_size = cv::Size(get_net_width(), get_net_height());
cv::Mat det_mat;
if (mat.size() != network_size)
cv::resize(mat, det_mat, network_size);
else
det_mat = mat; // only reference is copied
return mat_to_image(det_mat);
}
static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
{
cv::Mat img;
cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
*image_ptr = ipl_to_image(ipl_small.get());
return image_ptr;
}
private:
static image_t ipl_to_image(IplImage* src)
{
unsigned char *data = (unsigned char *)src->imageData;
int h = src->height;
int w = src->width;
int c = src->nChannels;
int step = src->widthStep;
image_t out = make_image_custom(w, h, c);
int count = 0;
for (int k = 0; k < c; ++k) {
for (int i = 0; i < h; ++i) {
int i_step = i*step;
for (int j = 0; j < w; ++j) {
out.data[count++] = data[i_step + j*c + k] / 255.;
}
}
}
return out;
}
static image_t make_empty_image(int w, int h, int c)
{
image_t out;
out.data = 0;
out.h = h;
out.w = w;
out.c = c;
return out;
}
static image_t make_image_custom(int w, int h, int c)
{
image_t out = make_empty_image(w, h, c);
out.data = (float *)calloc(h*w*c, sizeof(float));
return out;
}
#endif // OPENCV
};
#if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU)
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/core/cuda.hpp>
class Tracker_optflow {
public:
const int gpu_count;
const int gpu_id;
const int flow_error;
Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)),
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
int const old_gpu_id = cv::cuda::getDevice();
cv::cuda::setDevice(gpu_id);
stream = cv::cuda::Stream();
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt
sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30
cv::cuda::setDevice(old_gpu_id);
}
// just to avoid extra allocations
cv::cuda::GpuMat src_mat_gpu;
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
cv::cuda::GpuMat status_gpu, err_gpu;
cv::cuda::GpuMat src_grey_gpu; // used in both functions
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
cv::cuda::Stream stream;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
cv::Mat prev_pts_flow_cpu;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow_cpu;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow_cpu = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow_cpu);
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
}
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
}
void update_tracking_flow(cv::Mat src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
int const old_gpu_id = cv::cuda::getDevice();
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (src_mat.channels() == 3) {
if (src_mat_gpu.cols == 0) {
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
}
update_cur_bbox_vec(_cur_bbox_vec);
//src_grey_gpu.upload(src_mat, stream); // use BGR
src_mat_gpu.upload(src_mat, stream);
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream);
}
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
}
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow_gpu.empty()) {
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
return cur_bbox_vec;
}
int const old_gpu_id = cv::cuda::getDevice();
if(old_gpu_id != gpu_id)
cv::cuda::setDevice(gpu_id);
if (dst_mat_gpu.cols == 0) {
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
}
//dst_grey_gpu.upload(dst_mat, stream); // use BGR
dst_mat_gpu.upload(dst_mat, stream);
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream);
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
stream.waitForCompletion();
src_grey_gpu = dst_grey_gpu.clone();
cv::cuda::setDevice(old_gpu_id);
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x
cv::Mat cur_pts_flow_cpu;
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
dst_grey_gpu.copyTo(src_grey_gpu, stream);
cv::Mat err_cpu, status_cpu;
err_gpu.download(err_cpu, stream);
status_gpu.download(status_cpu, stream);
stream.waitForCompletion();
std::vector<bbox_t> result_bbox_vec;
if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err_cpu.at<float>(0, i) < flow_error && status_cpu.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
cur_pts_flow_gpu.swap(prev_pts_flow_gpu);
cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu);
if (old_gpu_id != gpu_id)
cv::cuda::setDevice(old_gpu_id);
return result_bbox_vec;
}
};
#elif defined(TRACK_OPTFLOW) && defined(OPENCV)
//#include <opencv2/optflow.hpp>
#include <opencv2/video/tracking.hpp>
class Tracker_optflow {
public:
const int flow_error;
Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) :
flow_error((_flow_error > 0)? _flow_error:(win_size*4))
{
sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create();
sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31
sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt
}
// just to avoid extra allocations
cv::Mat dst_grey;
cv::Mat prev_pts_flow, cur_pts_flow;
cv::Mat status, err;
cv::Mat src_grey; // used in both functions
cv::Ptr<cv::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow;
std::vector<bbox_t> cur_bbox_vec;
std::vector<bool> good_bbox_vec_flags;
void update_cur_bbox_vec(std::vector<bbox_t> _cur_bbox_vec)
{
cur_bbox_vec = _cur_bbox_vec;
good_bbox_vec_flags = std::vector<bool>(cur_bbox_vec.size(), true);
cv::Mat prev_pts, cur_pts_flow;
for (auto &i : cur_bbox_vec) {
float x_center = (i.x + i.w / 2.0F);
float y_center = (i.y + i.h / 2.0F);
prev_pts.push_back(cv::Point2f(x_center, y_center));
}
if (prev_pts.rows == 0)
prev_pts_flow = cv::Mat();
else
cv::transpose(prev_pts, prev_pts_flow);
}
void update_tracking_flow(cv::Mat new_src_mat, std::vector<bbox_t> _cur_bbox_vec)
{
if (new_src_mat.channels() == 3) {
update_cur_bbox_vec(_cur_bbox_vec);
cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1);
}
}
std::vector<bbox_t> tracking_flow(cv::Mat new_dst_mat, bool check_error = true)
{
if (sync_PyrLKOpticalFlow.empty()) {
std::cout << "sync_PyrLKOpticalFlow isn't initialized \n";
return cur_bbox_vec;
}
cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1);
if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) {
src_grey = dst_grey.clone();
return cur_bbox_vec;
}
if (prev_pts_flow.cols < 1) {
return cur_bbox_vec;
}
////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x
dst_grey.copyTo(src_grey);
std::vector<bbox_t> result_bbox_vec;
if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size())
{
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
{
cv::Point2f cur_key_pt = cur_pts_flow.at<cv::Point2f>(0, i);
cv::Point2f prev_key_pt = prev_pts_flow.at<cv::Point2f>(0, i);
float moved_x = cur_key_pt.x - prev_key_pt.x;
float moved_y = cur_key_pt.y - prev_key_pt.y;
if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i])
if (err.at<float>(0, i) < flow_error && status.at<unsigned char>(0, i) != 0 &&
((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0)
{
cur_bbox_vec[i].x += moved_x + 0.5;
cur_bbox_vec[i].y += moved_y + 0.5;
result_bbox_vec.push_back(cur_bbox_vec[i]);
}
else good_bbox_vec_flags[i] = false;
else good_bbox_vec_flags[i] = false;
//if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]);
}
}
prev_pts_flow = cur_pts_flow.clone();
return result_bbox_vec;
}
};
#else
class Tracker_optflow {};
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV)
#ifdef OPENCV
static cv::Scalar obj_id_to_color(int obj_id) {
int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } };
int const offset = obj_id * 123457 % 6;
int const color_scale = 150 + (obj_id * 123457) % 100;
cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]);
color *= color_scale;
return color;
}
class preview_boxes_t {
enum { frames_history = 30 }; // how long to keep the history saved
struct preview_box_track_t {
unsigned int track_id, obj_id, last_showed_frames_ago;
bool current_detection;
bbox_t bbox;
cv::Mat mat_obj, mat_resized_obj;
preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {}
};
std::vector<preview_box_track_t> preview_box_track_id;
size_t const preview_box_size, bottom_offset;
bool const one_off_detections;
public:
preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) :
preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections)
{}
void set(cv::Mat src_mat, std::vector<bbox_t> result_vec)
{
size_t const count_preview_boxes = src_mat.cols / preview_box_size;
if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes);
// increment frames history
for (auto &i : preview_box_track_id)
i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1);
// occupy empty boxes
for (auto &k : result_vec) {
bool found = false;
// find the same (track_id)
for (auto &i : preview_box_track_id) {
if (i.track_id == k.track_id) {
if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects
found = true;
break;
}
}
if (!found) {
// find empty box
for (auto &i : preview_box_track_id) {
if (i.last_showed_frames_ago == frames_history) {
if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet
i.track_id = k.track_id;
i.obj_id = k.obj_id;
i.bbox = k;
i.last_showed_frames_ago = 0;
break;
}
}
}
}
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
// get object image
cv::Mat dst = preview_box_track_id[i].mat_resized_obj;
preview_box_track_id[i].current_detection = false;
for (auto &k : result_vec) {
if (preview_box_track_id[i].track_id == k.track_id) {
if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) {
preview_box_track_id[i].last_showed_frames_ago = frames_history; break;
}
bbox_t b = k;
cv::Rect r(b.x, b.y, b.w, b.h);
cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size());
cv::Rect rect_roi = r & img_rect;
if (rect_roi.width > 1 || rect_roi.height > 1) {
cv::Mat roi = src_mat(rect_roi);
cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST);
preview_box_track_id[i].mat_obj = roi.clone();
preview_box_track_id[i].mat_resized_obj = dst.clone();
preview_box_track_id[i].current_detection = true;
preview_box_track_id[i].bbox = k;
}
break;
}
}
}
}
void draw(cv::Mat draw_mat, bool show_small_boxes = false)
{
// draw preview box (from old or current frame)
for (size_t i = 0; i < preview_box_track_id.size(); ++i)
{
auto &prev_box = preview_box_track_id[i];
// draw object image
cv::Mat dst = prev_box.mat_resized_obj;
if (prev_box.last_showed_frames_ago < frames_history &&
dst.size() == cv::Size(preview_box_size, preview_box_size))
{
cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size());
cv::Mat dst_roi = draw_mat(dst_rect_roi);
dst.copyTo(dst_roi);
cv::Scalar color = obj_id_to_color(prev_box.obj_id);
int thickness = (prev_box.current_detection) ? 5 : 1;
cv::rectangle(draw_mat, dst_rect_roi, color, thickness);
unsigned int const track_id = prev_box.track_id;
std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : "";
putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2);
std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h);
putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
if (!one_off_detections && prev_box.current_detection) {
cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0),
cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h),
color);
}
if (one_off_detections && show_small_boxes) {
cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y),
cv::Size(prev_box.bbox.w, prev_box.bbox.h));
unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history;
color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history);
if (prev_box.mat_obj.size() == src_rect_roi.size()) {
prev_box.mat_obj.copyTo(draw_mat(src_rect_roi));
}
cv::rectangle(draw_mat, src_rect_roi, color, thickness);
putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1);
}
}
}
}
};
#endif // OPENCV
//extern "C" {
#endif // __cplusplus
/*
// C - wrappers
LIB_EXPORTS void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id);
LIB_EXPORTS void delete_detector();
LIB_EXPORTS bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size);
LIB_EXPORTS bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size);
LIB_EXPORTS bbox_t* detect(image_t img, int *result_size);
LIB_EXPORTS image_t load_img(char *image_filename);
LIB_EXPORTS void free_img(image_t m);
#ifdef __cplusplus
} // extern "C"
static std::shared_ptr<void> c_detector_ptr;
static std::vector<bbox_t> c_result_vec;
void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) {
c_detector_ptr = std::make_shared<LIB_EXPORTS Detector>(cfg_filename, weight_filename, gpu_id);
}
void delete_detector() { c_detector_ptr.reset(); }
bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) {
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect(img, thresh, use_mean);
*result_size = c_result_vec.size();
return c_result_vec.data();
}
bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) {
c_result_vec = static_cast<Detector*>(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean);
*result_size = c_result_vec.size();
return c_result_vec.data();
}
bbox_t* detect(image_t img, int *result_size) {
return detect_custom(img, 0.24, true, result_size);
}
image_t load_img(char *image_filename) {
return static_cast<Detector*>(c_detector_ptr.get())->load_image(image_filename);
}
void free_img(image_t m) {
static_cast<Detector*>(c_detector_ptr.get())->free_image(m);
}
#endif // __cplusplus
*/