VOC Features Code complete?

This commit is contained in:
Joseph Redmon 2014-02-17 23:32:18 -08:00
parent 228d3663f8
commit 43424a343a

View File

@ -366,7 +366,7 @@ void test_im2row()
void train_VOC() void train_VOC()
{ {
network net = parse_network_cfg("cfg/voc_backup_sig_20.cfg"); network net = parse_network_cfg("cfg/voc_start.cfg");
srand(2222222); srand(2222222);
int i = 20; int i = 20;
char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
@ -374,7 +374,7 @@ void train_VOC()
float momentum = .9; float momentum = .9;
float decay = 0.01; float decay = 0.01;
while(i++ < 1000 || 1){ while(i++ < 1000 || 1){
data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400); data train = load_data_image_pathfile_random("images/VOC2012/val_paths.txt", 1000, labels, 20, 300, 400);
image im = float_to_image(300, 400, 3,train.X.vals[0]); image im = float_to_image(300, 400, 3,train.X.vals[0]);
show_image(im, "input"); show_image(im, "input");
@ -389,25 +389,56 @@ void train_VOC()
free_data(train); free_data(train);
if(i%10==0){ if(i%10==0){
char buff[256]; char buff[256];
sprintf(buff, "cfg/voc_backup_sig_%d.cfg", i); sprintf(buff, "cfg/voc_clean_ramp_%d.cfg", i);
save_network(net, buff); save_network(net, buff);
} }
//lr *= .99; //lr *= .99;
} }
} }
void features_VOC() int voc_size(int x)
{ {
int i,j; x = x-1+3;
x = x-1+3;
x = (x-1)*2+1;
x = x-1+5;
x = (x-1)*2+1;
x = (x-1)*4+11;
return x;
}
image features_output_size(network net, IplImage *src, int outh, int outw)
{
int h = voc_size(outh);
int w = voc_size(outw);
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
cvResize(src, sized, CV_INTER_LINEAR);
image im = ipl_to_image(sized);
reset_network_size(net, im.h, im.w, im.c);
forward_network(net, im.data);
image out = get_network_image_layer(net, 5);
//printf("%d %d\n%d %d\n", outh, out.h, outw, out.w);
free_image(im);
cvReleaseImage(&sized);
return copy_image(out);
}
void features_VOC(int part, int total)
{
int i,j, count = 0;
network net = parse_network_cfg("cfg/voc_features.cfg"); network net = parse_network_cfg("cfg/voc_features.cfg");
char *path_file = "images/VOC2012/all_paths.txt"; char *path_file = "images/VOC2012/all_paths.txt";
char *out_dir = "voc_features/"; char *out_dir = "voc_features/";
list *paths = get_paths(path_file); list *paths = get_paths(path_file);
node *n = paths->front; node *n = paths->front;
while(n){ int size = paths->size;
for(count = 0; count < part*size/total; ++count) n = n->next;
while(n && count++ < (part+1)*size/total){
char *path = (char *)n->val; char *path = (char *)n->val;
char buff[1024]; char buff[1024];
sprintf(buff, "%s%s.txt",out_dir, path); sprintf(buff, "%s%s.txt",out_dir, path);
printf("%s\n", path);
FILE *fp = fopen(buff, "w"); FILE *fp = fopen(buff, "w");
if(fp == 0) file_error(buff); if(fp == 0) file_error(buff);
@ -417,35 +448,59 @@ void features_VOC()
printf("Cannot load file image %s\n", path); printf("Cannot load file image %s\n", path);
exit(0); exit(0);
} }
int w = src->width;
int h = src->height;
int sbin = 8;
int interval = 10;
double scale = pow(2., 1./interval);
int m = (w<h)?w:h;
int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
image *ims = calloc(max_scale+interval, sizeof(image));
for(i = 0; i < 10; ++i){ for(i = 0; i < interval; ++i){
int w = 1024 - 90*i; //PICKED WITH CAREFUL CROSS-VALIDATION!!!! double factor = 1./pow(scale, i);
int h = (int)((double)w/src->width * src->height); double ih = round(h*factor);
IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels); double iw = round(w*factor);
cvResize(src, sized, CV_INTER_LINEAR); int ex_h = round(ih/4.) - 2;
image im = ipl_to_image(sized); int ex_w = round(iw/4.) - 2;
reset_network_size(net, im.h, im.w, im.c); ims[i] = features_output_size(net, src, ex_h, ex_w);
forward_network(net, im.data);
free_image(im); ih = round(h*factor);
image out = get_network_image_layer(net, 5); iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
for(j = i+interval; j < max_scale; j += interval){
factor /= 2.;
ih = round(h*factor);
iw = round(w*factor);
ex_h = round(ih/8.) - 2;
ex_w = round(iw/8.) - 2;
ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
}
}
for(i = 0; i < max_scale+interval; ++i){
image out = ims[i];
//printf("%d, %d\n", out.h, out.w);
fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w); fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
for(j = 0; j < out.c*out.h*out.w; ++j){ for(j = 0; j < out.c*out.h*out.w; ++j){
if(j != 0)fprintf(fp, ","); if(j != 0)fprintf(fp, ",");
fprintf(fp, "%g", out.data[j]); fprintf(fp, "%g", out.data[j]);
} }
fprintf(fp, "\n"); fprintf(fp, "\n");
out.c = 1; free_image(out);
show_image(out, "output");
cvWaitKey(10);
cvReleaseImage(&sized);
} }
free(ims);
fclose(fp); fclose(fp);
cvReleaseImage(&src);
n = n->next; n = n->next;
} }
} }
int main() int main(int argc, char *argv[])
{ {
int part = atoi(argv[1]);
int total = atoi(argv[2]);
//feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW);
//test_blas(); //test_blas();
@ -456,7 +511,7 @@ int main()
//test_nist(); //test_nist();
//test_full(); //test_full();
//train_VOC(); //train_VOC();
features_VOC(); features_VOC(part, total);
//test_random_preprocess(); //test_random_preprocess();
//test_random_classify(); //test_random_classify();
//test_parser(); //test_parser();